ANZIAM J. 49 (EMAC2007) pp.C230-C242, 2007 C230

Two implications of common models of
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Abstract

Analysis of a generalised growth equation shows that both the
maximum growth rate of a microbial culture and the duration of the
lag phase are related to each other and to the maximum growth. Sim-
ilar relationships apply to growth expressions, such as the logistic and
Gompertz models, that are special cases of the generalised model.
Moreover, the same relationships are observed qualitatively in mea-
surements of the growth of Salmonella species. These results may
allow the characterisation of microbial growth with fewer parameters
than is usually the case and imply the likelihood of a fundamental
physiological interdependence between maximum growth rate, the du-
ration of the lag time and the maximum growth.
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1 Introduction

Microbial population growth in liquid culture is triphasic. An initial pe-
riod of little growth (the lag phase) is followed by a phase of rapid growth
(the exponential phase) which eventually ceases and the population enters
stationary phase (Figure 1). The lag phase is usually said to reflect the adap-
tation of the cells to the new environment and its duration X is often used
to reflect this process. The maximum growth rate p,, is measured from the
exponential phase and the maximum growth £ is observed in the stationary
phase. The growth in the size of the population z(t) as a function of time ¢
has been modelled using

:L‘/ _ %xl—np(kn _ xn)p-i—l ’ (1)
where [ is related to p,, A and k, and n > 0 and —1 < p < 1/n are
constants [11] modulating the detailed shape of the growth curve. For con-
venience, the solution to (1) is
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where the initial inoculum is xy = z(0) and ¢ is the time following inoculation
of the culture. Section 2 assumes that p > 0 (or that p — 0) in order to avoid
the possible poles in (2). This form of the generalised growth equation (1) is
related to other models [6, 12], and it incorporates several well known models
as special cases. These include the logistic equation [13], when n = 1 and
p=20

— %x(k’ —1z),
the Malthusian model [5], if £ — 0o and p =0
o' = fr,

and the Gompertz model [4], for which fn — ', n — 0and p — 0
' = Fzn(k/z).

The Gompertz model is often used to obtain estimates of k, u,, and A from
microbial growth data [15], but (1) has previously been used to model the
growth of rats [11] and cultured mammalian cells [7].

Of the parameters of interest to experimentalists (Figure 1), only k ap-
pears in (1) and (2). The other parameters commonly used in the character-
isation of microbial growth, u,, and A, are derived from (1) and related to
each other, k and xy. Here two implications are drawn from (1): k o< pi, A
and f1,,, o< 1/X (Section 2). Moreover, these relationships are seen (Section 3)

in at least some of the available microbial growth data, such as those in
ComBase [1, 2].

2 Parameter relationships

Expressions relating the maximum growth rate u,, and the duration of the
lag phase A as functions of 3, k, zo, n and p are determined from (1). From
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F1GURE 1: The triphasic growth curve and the parameters often employed
to describe growth. The three phases are indicated approximately (top),
the maximum growth £ and initial inoculum x, are indicated by horizontal
dashed lines and the lag time A and maximum growth rate p,, are also shown.
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these, an expression relating u,,, A and k is obtained, which shows that
k o< pimA and pi,, oc 1/X.

The maximum growth rate is the maximum value of 2/, which occurs
when 2/ =0 and 2o <z < k,

— np)d-np) 1/n
o = {[n<p+ D [%] }ﬁk, 3)

(14 n)0+n)

and the term in braces depends only on n and p, so (3) is p,, = a(n,p)Gk.
For the logistic model «(1,p — 0) = 1/4 and for the Gompertz model
a(n — 0,p — 0) = 1/e, as reported by Winsor [14].

The lag time A has been defined in at least two different ways: as the
time at which the tangent to the exponential phase of the curve intersects
x = xo [15]; or as the time at which z” is a maximum [3]. The former yields
an awkward expression (except in specific cases), but the latter definition

yields )
1 p B xg P
) )] W

where p is the ™ value corresponding to the time at which the maximum
of " occurs and is the smaller root of the quadratic in ="

(14n)(1+2n)2*"+ (1+n)((3p—1)n—2)k"2" 4+ (np—1)(2np—1)k** = 0. (5)

Since p depends only on k, zo, n and p, (4) is

1
A= —g(k,zo,m,p) (6)
5
which means, for example, that
kE—
g(k,xo,l,p—%)):lnu, (7)

Zo
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where a = (3 — v/3)/(3 + V/3), for the logistic model, so g(k,zo,1,p — 0)

increases with k.
Eliminating 3 from (3) and (6), yields

Mm)\ = ka(n;p)g<ka$0> nap) = kf(ku Jrg,n,p) ) (8)

which defines the relationship implicit in (1) between the four experimentally
relevant parameters. For the logistic model, an explicit form of (8) is
k. a(k — xo)
mA=—In ———~ 9
0 y— (9)
obtained by substituting (7) and a(1,p — 0) into (8). In this case, p,A
increases with k, as is also the case for the Gompertz model, although the
expression is more complex.

3 Application to bacterial growth

The data shown in Figure 2 represent the growth of Salmonella species and
illustrate some of the variation of & (6 < k < 12), pyn (0h™' < g <
1h™") and A (2h < A < 500h). The parameters estimated from more than
100 growth curves are plotted in Figure 3 according to (8). Most of the
data conform to (8), and in those instances that do not (the yellow squares
in Figure 3) at least one parameter was not reliably estimated. Most of
these cases involved unreliable estimates of k£, which occurred because the
stationary phase was poorly defined by the data, as exemplified by the two
growth curves in Figure 2 with the highest p,, (the open squares and yellow
diamonds).

The maximum growth rate u,, should be proportional to k, consistent
with (3), because both parameters have been shown to depend on the energy
utilised per unit growth [10]. Specifically, p,, is related to the ratio of the rate
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FIGURE 2: Examples of Salmonella sp. growth data selected from Com-
Base [1] (entry B092) to illustrate the variation in the parameters (A,
i and k, that are analysed further in Figures 3 and 4) and in the quality of
the data and the curves fitted to them [9]. The colour of the data points and
the symbols used are intended only to differentiate between growth curves.
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FIGURE 3: Summary of the relationship between kf(k, xo,n,p) and p,, (8)
for 108 growth curves [1| (entry B092). The yellow squares represent data
excluded from the analysis because at least one of the parameter estimates
(generally k) was not reliable.
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FIGURE 4: Summary of the relationship between A and pu,, for 108 growth
curves [1] (entry B092). The yellow squares represent those data excluded
from the analysis in Figure 3 because at least one of the parameter estimates
was not reliable.

of energy utilisation and the energy utilised per unit growth [10]. The maxi-
mum growth k& depends on the composition of the medium and the efficiency
with which the cells utilise the available energy to generate biomass [10], al-
though it is also influenced by other factors, such as the sensing of population
density [8].

Equation (8) indicates that p,, o< 1/, consistent with the data shown in
Figure 4. The duration of the lag phase X is usually related to the adaptation
of the cells to a new growth environment. Several factors could contribute to a
prolonged lag phase, for example the cells used to inoculate the culture could
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be in a poor physiological state, the population could be dominated by slow-
growing cells or the environment might be unsuitable. In such circumstance
the cells might well be expected to exhibit a low .

4 Conclusion

The growth of bacteria (Figure 2) has been modelled using (1), from which it
has been shown that u,, o< k ((3) and Figure 3) and that g, o< 1/ ((8) and
Figure 4). This implies that the faster a culture can grow pi,,, the shorter the
time required for the population to adapt to a new culture medium A and
the greater the extent of growth k. As (1) includes several common growth
models as special cases, these relationships are also observed in commonly
used models of microbial growth [15]. The experimental confirmation of these
relationships would indicate that the processes of adaptation and growth are
functionally interdependent and that microbial growth can be characterised
with fewer parameters.

References

[1] Anonymous, Combase. http://www.combase.cc. €232, C236, C237,
C238

2] Baranyi, J. and Tamplin, M. L., ComBase: a common database on
microbial responses to food environments, J. Food Protect., 67, 2004,
1967-1971. http://apt.allenpress.com/aptonline/?request=
get-abstract&issn=0362-028X&volume=067&issue=09&page=1967.
232


http://www.combase.cc
http://apt.allenpress.com/aptonline/?request=get-abstract&issn=0362-028X&volume=067&issue=09&page=1967
http://apt.allenpress.com/aptonline/?request=get-abstract&issn=0362-028X&volume=067&issue=09&page=1967

References C240

3]

Buchanan, R. L. and Cygnarowicz, M. L., A mathematical approach
toward defining and calculating the duration of the lag phase, Food
Microbiol., 7, 1990, 237-240. doi:10.1016/0740-0020(90)90029-H. C234

Gompertz, B., On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life
contingencies, Phil. Trans R. Soc. Lond., 115, 1825, 513-585.
doi:10.1098 /rstl.1825.0026. €232

Malthus, T., An Essay on the Principle of Population, as it Affects the
Future Improvement of Society with Remarks on the Speculations of
Mr. Godwin, M. Condorcet, and Other Writers, J. Johnson, 1798.
C232

Marusic, M. and Bajzer, Z., Generalized two-parameter equation of
growth, J. Math. Anal. Appl., 179, 1993, 446-462.
d0i:10.1006 /jmaa.1993.1361. C232

Marusic, M., Bajzer, Z., Vuk-Pavolic, S. and Freyer, J. P., Tumor
growth in vivo and as multicellular spheroids compared by
mathematical models, Bull. Math. Biol., 56, 1994, 617-631.
do0i:10.1007/BF02460714. C232

Redfield, R. J., Is quorum sensing a side effect of diffusion sensing?,
Trends Microbiol., 10, 2002, 365—-370.
do0i:10.1016/S0966-842X(02)02400-9. C238

R Core Development Team, R: a package for statistical computing,
R Foundation for Statistical Computing, 2006.
http://www.r-project.org. C236

Russell, J. B. and Cook, G. M., Energetics of bacterial growth:
balance of anabolic and catabolic reactions, Microbiol. Rev., 59, 1995,
48-62. http://www.pubmedcentral .nih.gov/articlerender.fcgi?
artid=239354. C235, C238


http://dx.doi.org/10.1016/0740-0020(90)90029-H
http://dx.doi.org/10.1098/rstl.1825.0026
http://dx.doi.org/10.1006/jmaa.1993.1361
http://dx.doi.org/10.1007/BF02460714
http://dx.doi.org/10.1016/S0966-842X(02)02400-9
http://www.r-project.org
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=239354
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=239354

References C241

[11]

[12]

[13]

[14]

[15]

Turner, M. E.; Jr, Bradley, E. L., Jr, Kirk, K. A. and Pruitt, K. M., A
theory of growth, Math. Biosci., 29, 1976, 367-373.
doi:10.1016/0025-5564(76)90112-7. C231, C232

Savageau, M. A., Growth equations—a general equation and a survey
os special cases, Math. Biosci., 48, 1980, 267-278.
doi:10.1016/0025-5564(80)90061-9. C232

Verhulst, P.-F., Notice sur la loi que la population suit dans son
accroissement, Corresp. Math. Physique, 10, 1838, 113-121.
http://www.google.com.au/books?id=NTgDAAAAQAAJ&printsec=
frontcover&dq=editions:0X2PwfU_YZepVwHW. C232

Winsor, C. P., The Gompertz curve as a growth curve. Proc. Natl
Acad. Sci. USA, 18, 1932, 1-8. http://www.pubmedcentral .nih.
gov/articlerender.fcgi?artid=1076153. C234

Zweitering, M. H., Jongenburger, I., Rombouts, F. M. and van’t Riet,
K., Modeling of the bacterial growth curve, Appl. Environ. Microbiol.,
56, 1990, 1875-1881.
http://intl-aem.asm.org/cgi/content/abstract/56/6/1875.
0232, C234, C239


http://dx.doi.org/10.1016/0025-5564(76)90112-7
http://dx.doi.org/10.1016/0025-5564(80)90061-9
http://www.google.com.au/books?id=NTgDAAAAQAAJ&printsec=frontcover&dq=editions:0X2PwfU_YZepVwHW
http://www.google.com.au/books?id=NTgDAAAAQAAJ&printsec=frontcover&dq=editions:0X2PwfU_YZepVwHW
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1076153
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1076153
http://intl-aem.asm.org/cgi/content/abstract/56/6/1875

References C242

Author address

1. Simon Brown, School of Human Life Sciences, University of
Tasmania, Launceston, AUSTRALIA.
mailto:Simon.Brown@utas.edu.au


mailto:Simon.Brown@utas.edu.au

	Introduction
	Parameter relationships
	Application to bacterial growth
	Conclusion
	References

