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Abstract

Personal computers of the past were limited to running computa-
tional fluid dynamics codes in serial mode. With the advent of multi-
core technology and suitable compilers, personal computers nowadays
can execute codes in a parallel fashion similar to that of supercom-
puters and cluster computer systems. This article investigated what
performance can be achieved when executing an aerodynamic code on
an Intel quad core based personal computer with an OpenMP compiler
in a Windows environment. The code solved the Euler equations to
find the flowfield around a naca 0012 aerofoil on an O-type boundary
fitted structured grid system. A speedup of up to 350% was obtainable
in double precision accuracy. The reduced computation time means
that, for small scale problems, more accurate Euler codes can replace
commonly used transonic small disturbance codes. For larger prob-
lems, this information serves as a reference for developers of hybrid
MPI/OpenMP algorithms for cluster computer systems.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/345
for this article, c© Austral. Mathematical Soc. 2008. Published June 5, 2008. ISSN 1446-
8735
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1 Introduction

Inadequate and affordable computer power has plagued computational fluid
dynamics (cfd) research since its inception. Consequently, the claim made
by Harvard Lomax [18] in the late 1960s that cfd would replace wind tun-
nel experiments has not yet materialised. Instead, problems that required
investigation were simplified, so that solutions were obtained within an ac-
ceptable turnaround time using the computing platforms available. Often
the only way to obtain results in a timely manner, for demanding high level
aerodynamics solvers based on Euler or Navier–Stokes equations, required
employing a very expensive supercomputer or cluster computer system. Con-
sequently, research predominantly focuses on large-scale computations and
associated issues using such systems [3, 4, 8]. However, recent developments
offer a tantalising insight into new computation accelerating technologies for
ordinary desktop personal computers (pcs). These include using relatively
inexpensive high end graphics card based solutions with amd/ati’s Close
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To the Metal (ctm) [1] and Nvidia’s Compute Unified Device Architecture
(better known as cuda) [16], which offer performance of up to 500 Gflops
per card for single precision calculations (double precision versions have just
been released). An alternative is Intel’s Tera-scale research project [7], which
created an 80 core prototype processor that delivers in excess of 1 Tflops, al-
though currently the core count is limited to four for most commercially
available general purpose processors.

Here we ask what sort of performance can a regular pc offer for less de-
manding cfd applications, particularly given that multiple processing cores
can now be accommodated in a single socket rather than resorting to the
multi-socket architecture of the past? A finite difference based scheme, im-
plementing Van Leer flux blending [21], was developed to solve the two di-
mensional Euler equations, in double precision accuracy, on an O-type struc-
tured grid system [14, 15]. The grid system was generated by another code,
implementing an efficient method of false transients, coupled with an approx-
imate factorisation (af) technique [12, 13] and a variable time step cycling
process [11]. The computations for flowfields around a naca 0012 aerofoil at
2◦ angle of attack were performed on a pc with an Intel 2.4 GHz quad core
processor using an openmp compiler in a Windows environment.

2 Grid generation

The first step in solving the Euler equations involves establishing a smooth
boundary fitted grid system around the aerofoil. To do this the cartesian
coordinates in the physical domain, r = (x, z) , are mapped to general curvi-
linear coordinates in the computational domain, ϑ = (ξ, ζ), via a relation
ϑ = ϑ(r) . The mapping is one to one to ensure grid lines of the same family
do not cross each other, and provides a smooth grid distribution with min-
imum skewness [6]. The mapping is constructed by specifying the desired
grid points on the boundary with the interior point distribution determined
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Figure 1: Grid system used in the simulations: (left) full view; (right) grid
region near the naca 0012 aerofoil.

through the solution of a system of Poisson’s equations. Additional grid
clustering in a specific region of the physical domain can be enforced via the
source terms of the equations. The grid equations are solved by the method
of false transients, coupled with an af technique [12, 13] and a variable time
step cycling process [11] to further enhance the convergence rate of the grid
generation process. The process is efficient and robust, and is well docu-
mented [14, 15]. Figure 1 shows the grid system used for the simulation,
which has the farfield boundary located at a distance of eight chord lengths
from the centre of the aerofoil. To investigate the effect grid size has on
performance, coarse (100 streamwise points by 50 radial points), medium
(200 by 100) and fine (400 by 200) meshes were created. A distribution ratio
of two to one was chosen, so that the cells would have an aspect ratio of one
to one near the aerofoil to minimise grid line skewness.
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3 Euler solver with flux blending technique

The adiabatic flowfield around the aerofoil, without body forces, is assumed
to be governed by the unsteady Euler equations, written in strong conser-
vation law form with flux variables as the dependent variables [5, 6]. The
equations were nondimensionalised with freestream fluid density, freestream
fluid speed and aerofoil chord length, resulting in

Q̂τ + Êξ + Ĝζ = 0 , (1)

where

Q̂ = 1
J
Q , Ê = 1

J

(
Eξx + Gξz

)
, Ĝ = 1

J

(
Eζx + Gζz

)
, (2)

and J is the Jacobian of transformation. In the above and subsequent equa-
tions, bold face letters represent vectors, and subscripts represent differentia-
tion as in Qτ = ∂Q/∂τ . The solution vector, Q, and flux vectors, E and G,
in Equation (2) are defined by

Q =


ρ
ρu
ρw
ρet

 , E =


ρu

ρu2 + p
ρuw

u(ρet + p)

 , G =


ρw
ρwu

ρw2 + p
w(ρet + p)

 , (3)

where ρ is the fluid density, (u,w) are the cartesian fluid velocity components,
et is the total energy per unit mass, and p is the fluid pressure determined
from

p = (γ − 1)
[
ρet − 1

2
ρ
(
u2 + w2

)]
. (4)

Here γ is the ratio of specific heats, which is about 1.4 for ambient air.

The flux vectors in Equation (1) are split according to Ê = Ê
+

+ Ê
−

and Ĝ = Ĝ
+
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, resulting in

Q̂τ +
(
Ê
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−
ξ

)
+
(
Ĝ
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−
ζ

)
= 0 . (5)
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In the finite difference scheme, forward flux terms (plus superscript) are
discretised using a backward difference rule, and a forward difference rule
for backward flux terms (minus superscript). When compared to centred
schemes this brings some advantages, such as superior dissipation and dis-
persive properties, and up to twice the stability bound [19]. Van Leer flux
blending [21] is used to solve the equation since it overcomes the spurious
oscillations (that appear at sonic transitions and stagnation points) produced
by the Steger and Warming flux splitting [9, 19] technique.

Since the governing equation system is hyperbolic in time, for steady
flow simulations the solution process is marched in time until a steady state
solution is obtained. For simplicity and since explicit schemes are well suited
to parallel execution, a second order accurate (in both space and time) flux
splitting version of MacCormack’s scheme [5] is employed. MacCormack’s
scheme involves a predictor-corrector sequence at each time level. In the
predictor step, the time derivative is approximated by a first order forward
time difference rule while all spatial derivatives are approximated by first
order backward and forward difference rules as appropriate, yielding

Q̂
n+1

i,k = Q̂
n

i,k −
∆τ

∆ξ

[
Ê

+

i,k − Ê
+

i−1,k + Ê
−
i+1,k − Ê

−
i,k

]n
− ∆τ

∆ζ

[
Ĝ

+

i,k − Ĝ
+

i,k−1 + Ĝ
−
i,k+1 − Ĝ

−
i,k

]n
, (6)

where ∆τ is the time step, ∆ξ and ∆ζ are the grid spacings in the streamwise
and radial directions. Since the grid spacings can be selected arbitrarily, they
are set to unity. This simplifies the related expressions that are to be evalu-
ated by the scheme, and hence helps to reduce the required computation time
and errors resulting from evaluating the expressions numerically. The cor-
rector step is more involved, and was presented by Steger and Warming [19].
The MacCormack scheme has been shown to be conditionally stable [5, 19]
provided that the time step is not too large. A time step of about 4.3× 10−4

(equal to two microseconds), found empirically, seemed to provide a numer-
ically stable solution with the boundary conditions used.
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It is essential that proper boundary conditions are implemented in the
numerical solution procedure, otherwise the problem will be ill posed and
detrimentally affect the computations. The slip condition is enforced to en-
sure a nonzero velocity exists at a tangent to the aerofoil surface for inviscid
flow. As there is no mass flow into or out of the aerofoil, the relationship
w = −uζx/ζz holds at the aerofoil surface. Numerical experiments have
shown that it is not necessary to enforce the Kutta boundary condition
in the wake region [5]. The artificial branch cut made in the grid system
has periodic boundary conditions and was treated in the manner suggested
by Thompson, Warsi and Mastin [20]. Dirichlet boundary conditions were
applied to the farfield boundary due to their simplicity. Although being
overprescribed, there is little difference in lift forces between this and well-
posed characteristic boundary conditions [2] which are harder to implement.
Freestream fluid values at sea level conditions for ambient air were used as
initial conditions. The solution was deemed converged when the Euclidean
norm of the difference of the computed solution between any two consecutive
time levels, divided by the total number of grid points, was less than 10−10

for each of the flux variables, or when the scheme reached 5× 105 iterations.

4 Computing resources

In terms of software, for parallel programming mainly two options exist, no-
tably Open Multi-Processing (openmp) and message passing solutions such
as the Message Passing Interface (mpi). The latter is used with cluster com-
puter systems, where data is transferred between nodes. While it can also
be used for multiple processors on a single node, the programming effort re-
quired is much higher than for openmp which is designed to share memory
on an individual node. For this reason, openmp was used here.

In the code, the compiler directive !$OMP PARALLEL DEFAULT(PRIVATE)

SHARED(Qhat,...) marked the start of the parallel section inside the iter-
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Figure 2: (left) Pressure coefficient distribution for naca 0012 aerofoil;
(right) comparison of computing speedups for different thread modes.

ation loop. The thread numbers were limited with !$OMP NUM_THREADS().
The directives !$OMP DO and !$OMP END DO were placed at the start and end
of each of the two loop blocks (predictor and corrector steps), where intensive
computations took place to calculate the flow variables for each grid point
at each time level. The parallel section was then terminated after the second
loop with the !$OMP END PARALLEL directive.

The Intel Visual fortran Compiler 9.1 (standard edition) for Windows,
which supports openmp, coupled with Microsoft Visual Studio 2005, was
expected to offer the best performance for Intel processor under investigation.
The compiler options were set to optimise for maximum speed on Pentium IV
and additional Intel processors, together with /QaxB and /fast which were
empirically found to reduce execution time. The personal computer consisted
of an Intel 2.4 GHz Core 2 Quad Q6600 processor with 8 Mb L2 cache and
1,066 MHz front side bus, Gigabyte motherboard with an Intel G965 chipset
and Corsair 2x1 Gb ddr2 800 MHz dual channel memory, running Microsoft
Windows xp Professional Service Pack 2.
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5 Results and discussions

For investigation purposes, flowfields around a naca 0012 aerofoil at 2◦ angle
of attack, as depicted in Figure 1, were computed on an O-type structured
grid with coarse, medium and fine meshes. The freestream Mach number
is 0.63 and the Reynold’s number is 1.467 × 107. The calculated pressure
distribution is presented with the well known numerical inviscid solution by
Lock [10] in Figure 2.

Adopting the serial code computation time as the benchmark, the per-
formance results illustrated in Figure 2 show that a substantial reduction
in execution time is achieved with a multicore pc. However, with only one
thread the speedup is reduced by 2.5% to 3.3% due to the overhead associated
with enabling openmp. As the number of threads increased, the speedup as-
sociated with the quad core processor varied approximately linearly with the
thread number. Furthermore, a larger speedup is seen with the coarse and
medium grids when compared to the fine grid. In regards to the coarse and
medium grid results, a maximum speedup of 350% (which is slightly below
the ideal value of 400%, most likely due to communication overhead) was
achieved using four threads. The disparity between the two smaller grids is
attributed to the openmp overhead to computation ratio per iteration be-
ing higher for the coarse grid than for the medium grid. In other words,
each outer loop iteration performs computations for all of the grid points in
the streamwise direction along a given radial level. Since the medium grid
contains more nodes than the coarse grid, the computation work done per
iteration is greater for the medium grid while the openmp overhead is the
same for each grids. Therefore, the proportion of time per iteration spent
by openmp to distribute the workload is larger for the coarse grid compared
to the medium grid, and this results in a slight reduction in the speedup
for the coarse grid. As for the fine grid, the speedup rose to a maximum
of 256%. This significant reduction in performance, compared to the coarser
grids, is suspected to be caused by inadequate front side bus bandwidth. The
coarse and medium grids occupied approximately 1.5 and 6.1 Mb of memory,
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respectively, which the faster cache memory could accommodate. Thus, the
computations were limited by processor speed, whereas the fine grid required
about 24 Mb, which could only fit in the slower main memory whose acces-
sibility restricted the computation speed.

The results for the smaller grids have demonstrated that the new multi-
core architecture offers similar scaling performance to older shared memory
multiprocessor architecture [8]. The execution time using four threads was
under ten minutes for the coarse and medium grids, and about fifty minutes
for the fine grid. When moving from two to three dimensional simulations,
computer requirements increase rapidly both in terms of processing power
and memory. While memory is typically limited to a maximum of 8 Gb for
a pc at present, which would be sufficient for three dimensional simulations,
the computation time for a fine grid is expected to be in the order of days. For
these types of larger simulations, a cluster computer system could produce
results more rapidly although this would be dependent upon factors includ-
ing the communication to computation ratio (which may limit scalability)
and accessibility to the cluster (without waiting in a queue).

As computational power increases, more versatile and general but less
computationally efficient codes will be adopted [17]. As an example, with
the processing speed of a quad core pc, a two dimensional Euler solver could
replace popular full potential and transonic small disturbance [12, 13] solvers
which are limited to the potential flow regime, supercritical flows with weak
embedded shock waves, thin aerofoils and small angle of attacks.

6 Concluding remarks

The scaling performance of an Intel quad core processor using openmp to
accelerate a two dimensional cfd problem on a pc was studied. With coarse
grids, an excellent speedup of 350% was achieved, while for fine grids the
speedup was 256%. In future work, processors with larger core numbers as
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well as graphics card based solutions will be investigated to establish their
associated speedups in newer pcs. The reduction in turnaround times with
the Euler code will make it attractive in aeroelasticity analysis work, where a
large number of simulations need to be executed; improving the accuracy of
aerodynamic computations (compared with the full potential and transonic
small disturbance equations) in the preliminary design of aircraft wings; or
can even be used as an educational tool for students studying computational
aerodynamics.
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