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Abstract

A linear two player zero-sum pursuit-evasion differential game is
considered. The control functions of players are subject to integral
constraints. In the game, the first player, the Pursuer, tries to force
the state of the system towards the origin, while the aim of the second
player, the Evader, is the opposite. We construct the optimal strategies
of the players when the control resource of the Pursuer is greater than
that of the Evader. The case where the control resources of the Pursuer
are less than or equal to that of the Evader is studied to prove the main
theorem. For this case a new method for solving of the evasion problem
is proposed. We assume that the instantaneous control employed by
the Evader is known to the Pursuer. For construction, the strategy of
the Evader information about the state of the system and the control
resources of the players is used.
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1 Introduction

The study of linear two person zero-sum differential games was initiated by
Isaacs [1]. Pontryagin [2], Berkovitz [3, 4], Krasovskii [5], Fleming [6, 7],
Friedman [8], Elliott and Kalton [9], Petrosyan [10] and Hajek [11] developed
the theory of differential games during 1960–1980.

Geometrical constraints are convenient for the mathematical study of control
processes described by differential equations. Geometrical constraints are not
the only way to model control processes. Moreover, they are not with reality.
In real life, resources such as energy and fuel are restricted and hence we
obtain integral constraints on control function.

Linear differential games with integral constraints on controls were examined
in many works. Such games were slightly touched in the book of Issacs [1].
They were studied by Azimov [12, 13] and Nikolskii [14] from the point of
view of Pontryagin’s first method. Later, different classes of linear differential
games with integral constraints were investigated [14, 15, 16, 17, e.g.].

Ushakov [16] studied a linear differential game and showed that under some
conditions the extremal strategy guarantees the termination of the pursuit at
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the instant of program absorption [16]. A differential game described by

ẋ = Ax+ bu+ cv

where u and v are scalar control parameters, and b and c are n-vectors, was
studied by Pshenichnii and Onopchuk [17]. Azamov and Samatov [18] exam-
ined a differential game with simple motions in depth. The optimal pursuit
problem in the closed convex subset of Rn was studied by Ibragimov [19].
The work of Ibragimov [20] was devoted to the game described by an infinite
system of differential equations with diagonal matrix. In this study the linear
pursuit-evasion game for non-autonomous systems with integral constraints
is considered. The objective of this article is to study a linear two person
zero-sum pursuit-evasion differential game described by

ż(t) = A(t)z+ B(t)(v− u), z(0) = z0 6= 0 , z, z0 ∈ Rn, (1)

with the control parameters u and v satisfying integral constraints∫∞
0

|u(t)|2dt 6 ρ2,
∫∞
0

|v(t)|2dt 6 σ2, (2)

where A(t) and B(t) are continuous n× n matrices, t > 0 , the terminal set
is M = {0} and ρ and σ are given positive numbers.

Definition 1 A measurable function u(t), u : [0,∞) → Rn (v(t), v :
[0,∞) → Rn) subject to (2) is called an admissible control of the Pursuer
(the Evader, respectively).

We denote by Uρ (respectively Vσ) as the set of all admissible controls of the
Pursuer (Evader).

Definition 2 Pursuit is said to be completed in the game (1–2) if z(τ) = 0
at some τ > 0 .

The Pursuer tries to complete the game as early as possible, and the Evader
has the opposite aim.
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Definition 3 A function U(t, v), U : [0,∞)× Rn → Rn, is called a strategy
of the Pursuer if the system (1) has a unique absolutely continuous solution
z(t) = z(t, z0,U, v(·)), t > 0 , at u = U(t, v) for every v(·) ∈ Vσ . A strategy
of the Pursuer is called admissible if each control generated by this strategy is
admissible.

Before the strategy of the Evader is defined, we extend the system (1–2) by
introducing two new one dimensional state variables p and q by the equations

ṗ = −|u|2, q̇ = −|v|2, p(0) = ρ2, q(0) = σ2. (3)

Such an extension is a typical technique applied in studying games with
integral constraints. If t is a current time, u(·) ∈ Uρ and v(·) ∈ Vσ , then

p(t) = ρ2 −

∫ t
0

|u(s)|2 ds, q(t) = σ2 −

∫ t
0

|v(s)|2 ds.

The functions p(t) and q(t) are called the control resources of the Pursuer
and Evader, respectively. In the sequel, the four-tuple (t, z,p,q) is referred
as the state of the game.

Definition 4 A function V(t, z,p,q), V : [0,∞) × Rn × R × R → Rn,
such that the systems (1) and (3) have a unique absolutely continuous solu-
tion (z(t),p(t),q(t)), t > 0 , at v = V(t, z,p,q) for every u(·) ∈ Uρ is called
a strategy of the Evader. A strategy of the Evader is called admissible if each
control generated by this strategy is admissible, that is, V(s, z(s),p(s),q(s))
is measurable and ∫∞

0

|V(s, z(s),p(s),q(s))|2 ds 6 σ2.

Definition 5 A finite number T is called the optimal pursuit time if the
following two conditions hold:

1. there is a strategy U0 of the Pursuer such that for any v(·) ∈ Vσ the
equality z(t, z0,U0, v(·)) = 0 holds at some t = τ ∈ [0, T ]—in this case
we say that the pursuit can be completed for the time T ;
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2. there is a strategy V0 of the Evader such that z(t, z0,u(·),V0) 6= 0 for
any control u(·) ∈ Uρ and t ∈ [0, T)—in this case we say that the
evasion is possible on [0, T).

The strategies U0 and V0 are called the optimal strategies of the Pursuer and
Evader, respectively.

The problem is to find the optimal pursuit time, and the optimal strategies
of the Pursuer and the Evader in the game (1–2).

2 Main results

By Cauchy’s formula, for t > 0 , the solution of (1) has the form

z(t) = Ψ(t)

(
z0 +

∫ t
0

Ψ−1(s)B(s)(v(s) − u(s))ds

)
.

We assume that detB(t) 6= 0 , and ρ > σ . Let Ψ(t) be a fundamental matrix
solution of the homogeneous system ż = A(t)z , and Ψ(0) = E be the unit
matrix. Then the differential game defined by equation (1) is equivalent to
the differential game described by

ż1 = C(t)(v(t) − u(t)), z1(0) = z0 , (4)

where C(t) = Ψ−1(t)B(t) is also continuous and nondegenerate. Solutions of
equations (1) and (4) are connected by the equation z1(t) = Ψ

−1(t)z(t).

Let

F(t) =

∫ t
0

C(s)C∗(s)ds , t > 0 , (5)

where C∗ is transpose of the matrix C. This function F(t) is symmetric and
invertible. We consider an initial state z0 such that

z0F
−1(t)z0 = (ρ− σ)2 (6)
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has a root t = θ . The set of such initial states is not empty. For example, if
e is an arbitrary nonzero vector and ϑ is any positive number, then

z0 = λe , λ = (ρ− σ)
(
eF−1(ϑ)e

)−1/2
satisfies equation (6).

Lemma 6 The root of equation (6) is unique.

Proof: Indeed, differentiating F(t)F−1(t) = E ,

F ′(t)F−1(t) + F(t)(F−1(t)) ′ = 0

which implies
(F−1(t)) ′ = −F−1(t)F ′(t)F−1(t).

Then

z0(F
−1(t)) ′z0 = −

〈
z0, F

−1(t)C(t)C∗(t)F−1(t)z0
〉

= −
∣∣C∗(t)F−1(t)z0∣∣2 < 0 ,

where 〈x,y〉 is the inner product of the vectors x and y. So the left hand
side of equation (6) is a decreasing function of t, t > 0 . Hence the root θ of
equation (6) is unique. ♠

Theorem 7 If ρ > σ , then θ, the root of equation (6), is the optimal pursuit
time in the game (1–2).

Proof: We show that pursuit can be completed in the time θ. We construct
the strategy of the Pursuer as

U0(t, v) =

{
v+ C∗(t)F−1(θ)z0 , 0 6 t 6 θ ,
0 , t > θ .

(7)
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First, we check the admissibility of this strategy. Let v(·) ∈ Vσ be an
arbitrary control of the Evader, and let u(t) ∈ Uρ be defined by the equality
u(t) = U0(t, v(t)). Then according to the Minkowskii inequality, and the
definition (5) of F(t) and (6),(∫∞

0

|u(t)|2 dt

)1/2
=

(∫ θ
0

∣∣v(t) + C∗(t)F−1(θ)z0∣∣2 dt)1/2
6

(∫ θ
0

|v(t)|
2
dt

)1/2
+

(∫ θ
0

∣∣C∗(t)F−1(θ)z0∣∣2 dt)1/2
6 σ+ ρ− σ = ρ .

Now it can be shown that the strategy (7) ensures the equality z1(θ) = 0 .
Hence the pursuit can be completed for the time θ.

Now we show that the evasion is possible on [0, θ). We construct a strategy V0
for the Evader such that z1(t) 6= 0 , t ∈ [0, θ), for the trajectory z1(t)
generated by z0, u(·) and V0, where u(·) ∈ Uρ is an arbitrary control function
of the Pursuer.

We construct the Evader’s strategy, V0, in two steps.

1. The strategy V0 is based on the fixed open-loop control function

v(t) =
σ

ρ− σ
C∗(t)F−1(θ)z0 if p(t) > q(t). (8)

This part of the strategy V0 can be described briefly: the Evader uses
the fixed control function v(t) while p(t) > q(t). This inequality is
true for the initial state (0, z0, ρ

2,σ2).

2. Now we construct the strategy V0 of the Evader for the position
(t∗, z∗,p∗,q∗) such that z∗ = z1(t∗) 6= 0 and p∗ = p(t∗) 6 q(t∗) = q∗ .

Let T∗ be any positive number. We partition the interval [t∗, t∗ + T∗]
into subintervals by t0 = t∗ , t1 = t∗ + h , . . . , ti = t∗ + ih , . . . ,



2 Main results E66

tn = t∗ + nh = t∗ + T∗ . The number h will be chosen later. We set

v(t) = 0 , t∗ 6 t < t∗ + h . (9)

Let

G(k+ 1) =

(∫ t∗+(k+1)h

t∗+kh

|C∗(t)e|2 dt

)1/2
, e =

z∗

|z∗|
,

αk =

(∫ t∗+kh
t∗+(k−1)h

|u(t)|2 dt

)1/2
, k = 1, 2, . . . .

We set, for k = 1, 2, . . . , (n− 1),

v(t) = αkG
−1(k+ 1)C∗(t)e , t∗ + kh 6 t < t∗ + (k+ 1)h . (10)

This constructs the strategy for the Evader.

We now show that the constructed strategy is admissible. Indeed, v(t) defined

by (8) satisfies
∫θ
0
|v(t)|2 dt 6 σ2. If v(t) is described by (9) and (10), then∫ t∗+T∗

t∗

|v(t)|2 dt =

n−1∑
k=0

∫ t∗+(k+1)h

t∗+kh

|v(t)|2 dt

=

n−1∑
k=1

∫ t∗+(k+1)h

t∗+kh

α2kG
−2(k+ 1)|C∗(t)e|2 dt

= α21 + · · ·+ α2n−1

=

∫ t∗+h
t∗

|u(t)|2 dt+ · · ·+
∫ t∗+(n−1)h

t∗+(n−2)h

|u(t)|2 dt

6
∫ t∗+T∗
t∗

|u(t)|2 dt 6 p∗ 6 q∗ .

Therefore, the constructed strategy of the Evader is admissible.

We now consider the case p(t) > q(t). We prove the following Lemma.
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Lemma 8 Let v(t) be defined by (8). Then z1(t) 6= 0 for any u(·) ∈ Uρ while
p(t) > q(t), 0 6 t < θ . Moreover, z1(t∗) 6= 0 at the first time t∗ ∈ (0, θ)
where p(t∗) = q(t∗).

Proof: Let us assume the contrary:

z1(τ) = 0 , p(τ) > q(τ) (11)

for some τ ∈ (0, θ). Hence, 0 = z1(τ) = z0 +
∫τ
0
C(t)(v(t) − u(t))dt . Then

according to (8) we obtain∫ τ
0

C(t)u(t)dt = z0 +

∫ τ
0

C(t)v(t)dt

= z0 +

∫ τ
0

C(t)
σ

ρ− σ
C∗(t)F−1(θ) z0 dt

= z0 +
σ

ρ− σ
F(τ)F−1(θ)z0 . (12)

Now we use the following [21].

Assertion 9 Let C(t), 0 6 t 6 T , be continuous n × n-matrix, and its
determinant be not identically zero on [0, T ]. Then among the measurable

functions u(·), u : [0, T ]→ Rn, satisfying the condition
∫T
0
C(s)u(s)ds = ξ ,

the control defined by the formula

u(s) = C∗(s)F−1(T)ξ , a.e. on [0, T ], where F(T) =

∫ T
0

C(s)C∗(s)ds ,

gives the minimum to the functional
∫T
0
|u(s)|2 ds .

If ξ equals the right part of (12) and T = τ , then according to Assertion 9
the control

u(t) = C∗(t)F−1(τ)

(
z0 +

σ

ρ− σ
F(τ)F−1(θ)z0

)
, 0 6 t 6 τ , (13)
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gives the minimum to the functional
∫τ
0
|u(s)|2 ds . As proved above the

function f(t) = z0F
−1(t)z0 is decreasing. Hence, combining (6), (8) and (13),

yields ∫ τ
0

|u(s)|2 ds−

∫ τ
0

|v(s)|2 ds > z0F
−1(τ)z0 +

2σ

ρ− σ
z0F

−1(θ)z0

> z0F
−1(θ)z0 +

2σ

ρ− σ
z0F

−1(θ)z0

= (ρ− σ)2 + 2ρσ− 2σ2 = ρ2 − σ2.

Hence,

ρ2 −

∫ τ
0

|u(s)|2 ds < σ2 −

∫ τ
0

|v(s)|2 ds ,

which means p(τ) < q(τ), which contradicts (11). So the proof of Lemma 8
is complete. ♠

We show that the evasion is possible in the case p(t∗) 6 q(t∗). We assume
that at some time t∗, 0 6 t∗ < θ , the equality p(t∗) = q(t∗) occurred. At
this time ∫∞

t∗

|u(s)|2 ds 6 p∗ ,

∫∞
t∗

|v(s)|2 ds 6 q∗ = p∗ .

According to Lemma 8, z∗ = z1(t∗) 6= 0 . We need to show that evasion is
possible on the interval [t∗, θ). It is a consequence of the following lemma
where we should take T∗ = θ− t∗ .

Lemma 10 If p(t∗) 6 q(t∗), z1(t∗) = z∗ 6= 0 , then evasion is possible
on [t∗, t∗ + T∗] from the initial point z∗.

Proof: We use the second part of the strategy (8–9). For simplicity of
calculations we take t∗ = 0 . To show the inequality z1(t) 6= 0 , it is sufficient
to establish that d(t) = 〈e, z1(t)〉 > 0 . We have

d(t) =

〈
e, z∗ +

∫ t
0

C(s)v(s)ds

〉
−

〈
e,

∫ t
0

C(s)u(s)ds

〉
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=

〈
e, z∗ +

m∑
k=1

∫kh
(k−1)h

C(s)v(s)ds+

∫ t
mh

C(s)v(s)ds

〉

−

〈
e,

m∑
k=1

∫ kh
(k−1)h

C(s)u(s)ds+

∫ t
mh

C(s)u(s)ds

〉
,

where t ∈ (mh, (m+ 1)h], m+ 1 6 n . Since 〈e,Cv〉 = 〈C∗e, v〉 and by the

definition of v,
∫h
0
C(s)v(s)ds = 0 , then

d(t) = |z∗|+

m∑
k=2

∫ kh
(k−1)h

〈C∗(s)e, v(s)〉 ds+
∫ t
mh

〈C∗(s)e, v(s)〉 ds

−

m∑
k=1

∫ kh
(k−1)h

〈C∗(s)e,u(s)〉 ds−
∫ t
mh

〈C∗(s)e,u(s)〉 ds .

For the constructed strategy of the Evader,∫ (k+1)h
kh

〈C∗(s)e, v(s)〉 ds = αkG(k+ 1). (14)

Also for any control of the Pursuer,∫ (k+1)h
kh

〈C∗(s)e,u(s)〉 ds 6
∫ (k+1)h
kh

|C∗(s)e| |u(s)|ds

6

√∫ (k+1)h
kh

|C∗(s)e|
2
ds

√∫ (k+1)h
kh

|u(s)|2 ds

6 αk+1G(k+ 1). (15)

According to (14) and (15) we obtain

d(t) > |z∗|+

m∑
k=2

αk−1G(k) −

m+1∑
k=1

αkG(k)

> |z∗|+

m∑
k=2

αk−1(G(k) −G(k− 1)) −
√
p∗(G(m) +G(m+ 1)) (16)
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since αk 6
√
p∗ . We now estimate∣∣∣∣∣

m−1∑
k=1

αk(G(k+ 1) −G(k))

∣∣∣∣∣
6

m−1∑
k=1

αk|G(k+ 1) −G(k)|

6

(
m−1∑
k=1

α2k

)1/2(m−1∑
k=1

|G(k+ 1) −G(k)|2

)1/2
. (17)

Here, we use the Cauchy–Schwartz inequality. We get,

m−1∑
k=1

α2k =

m−1∑
k=1

∫kh
(k−1)h

|u(t)|2 dt =

∫ (m−1)h

0

|u(t)|2 dt 6
∫∞
0

|u(t)|2 dt 6 p∗.

(18)
Denote

ωf(h) = sup {|f(t ′) − f(t ′′)| : t ′, t ′′ ∈ [0, T∗], |t ′ − t ′′| 6 h} .

Now verify that ωf(h) has the following two properties: ωf(h) > 0 ; the func-
tion f(t), 0 6 t 6 T∗ , is uniformly continuous if and only if limh→0ωf(h) = 0 .

Taking f(t) = |C∗(t)e|
2, yields

m−1∑
k=1

|G(k+ 1) −G(k)|2 6
m−1∑
k=1

|G2(k+ 1) −G2(k)|

=

m−1∑
k=1

∣∣∣∣∣
∫ (k+1)h
kh

|C∗(s)e|2 ds−

∫ kh
(k−1)h

|C∗(s)e|2 ds

∣∣∣∣∣
6

m−1∑
k=1

∫ kh
(k−1)h

∣∣∣|C∗(s+ h)e|2 − |C∗(s)e|
2
∣∣∣ ds

6
m−1∑
k=1

ωf(h)h 6 ωf(h)mh 6 T∗ωf(h). (19)



3 An illustrative example E71

By combining (17), (18) and (19), we obtain∣∣∣∣∣
m−1∑
k=1

αk(G(k+ 1) −G(k))

∣∣∣∣∣ 6√p∗T∗ωf(h) . (20)

We now estimate
√
p∗(G(m)+G(m+1)) in (16). Let K = maxt∈[0,T∗] |C

∗(t)e|.
Then √

p∗(G(m) +G(m+ 1)) 6 2Kρ
√
h . (21)

As the function f(t) defined above is continuous it is uniformly continuous.
So limh→0ωf(h) = 0 . If we choose h to satisfy√

p∗T∗ωf(h) + 2K
√
p∗h < |z∗|/2 ,

then according to (16), (20) and (21)

d(t) > |z∗|−
(√

p∗T∗ωf(h) + 2K
√
p∗h

)
>
1

2
|z∗|.

Thus, the Evader can choose h such that d(t) > 1
2
|z∗|. Consequently, evasion

is possible in the game (1–2). This completes the proof of Lemma 10. ♠
Hence, the proof of Theorem 7 is complete. ♠

3 An illustrative example

Here, we give an illustrative example that reduces to the system (4) and hence
Theorem 7 applies. We consider a differential game with one Pursuer P and
one Evader E whose motions are described by the equations

ẋ = y+ u1 − v1 , x(0) = x0 ,
ẏ = −x+ u2 − v2 , y(0) = y0 ,

|x0|+ |y0| 6= 0 , (22)

where x,y, x0,y0,u1,u2, v1,u2 ∈ R1. The control function u(·) (respec-
tively, v(·)) of the Pursuer P (Evader E) satisfies the inequalities (2). The



3 An illustrative example E72

game is regarded as ended when x(t) = y(t) = 0 for some t > 0 . Using the
representation [

ẋ

ẏ

]
=

[
0 1

−1 0

] [
x

y

]
+

[
u1 − v1
u2 − v2

]
,

and vector z = (x,y) equation (22) becomes

ż = Az+ B(u− v), z(0) = z0 =

[
x0
y0

]
, (23)

where

A =

[
0 1

−1 0

]
, B =

[
1 0

0 1

]
.

The fundamental matrix is defined by the formula

X(t) =

[
cos t sin t
− sin t cos t

]
, X(0) =

[
1 0

0 1

]
.

Here, we use the Cauchy formula to obtain the solution of the system (23)

z(t) = X(t)z0 +

∫ t
0

X(t− s)(u(s) − v(s))ds

= X(t)

(
z0 +

∫ t
0

X(−s)(u(s) − v(s))

)
ds = X(t)Y(t)

Now z(t) = 0 is equivalent to Y(t) = 0 . Therefore the differential game
described by (22) is equivalent to that described by

Ẏ(t) = X(−t)(u(t) − v(t)), Y(0) = z0 .

This system has the form (4), and so Theorem 7 applies.
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4 Conclusion

We have examined a linear pursuit-evasion differential game. We constructed
a pair of optimal strategies for the players and gave formulae to find the
optimal pursuit time.

That the game (1–2) can be completed for the first absorption time θ defined
by (6) is familiar [16]. The important point of our investigation is the
construction of the strategy of the Evader based on the position information;
moreover, it is in an explicit form. As z0 6= 0 , then Lemma 10 can be
reformulated as follows

If ρ 6 σ , then for any T > 0 evasion is possible on [0, T ] from z0.

We stress that although by definition the Evader’s strategy depends on z,
only z1(t∗) is used in the construction of the strategy V0.
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