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A practical algorithm for the computation of
tree felling times
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Abstract

The time taken for a tree to fall when felled can be expressed in
closed form in terms of elliptic integrals. However, this form of the so-
lution is of limited practical use to the non-mathematician. A straight-
forward numerical method is presented that can be programmed into
a spreadsheet in a few lines without requiring any high level program-
ming or mathematical skills. Good accuracy for practical purposes
is obtained without any iteration, but accuracy is further improved
with two or three iterations, each involving only one or two extra cells
in the spreadsheet. Results are compared with the analytic solution.
This article demonstrates how a challenging real problem is accurately
solved numerically with basic office tools and limited mathematics.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/368
for this article, c© Austral. Mathematical Soc. 2008. Published April 15, 2008. ISSN
1446-8735
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1 Introduction

The subject of this article is depicted by the free body diagram in Figure 1.
When a tree is felled its motion to the ground occurs in two stages: the initial
rotation about its point of contact with the stump; followed by free fall after
separation from the stump with constant vertical acceleration and constant
angular velocity. This article considers only the first stage, which cannot be
described in terms of elementary functions. The second is trivially described
mathematically, though is complicated in practice by the need to determine
which part of the tree strikes the ground first.

In order to render the problem soluble I assume

• only gravitational forces and contact forces at the stump are significant,
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Figure 1: Schematic diagram of tree being felled showing relevant algebraic
variables

• there is no moment at the point of contact with the stump,

• aerodynamic drag is negligible,

• adequate friction exists at the stump to restrain translation before sep-
aration (the cut is jagged), and

• there is no interference to the motion, for example the tree canopy does
not contact the ground before separation.

2 Problem definition

In Figure 1, valid until the instant of separation, O is the point of contact
between the tree and its stump about which the centre of mass G describes
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circular motion with radius h. The tree and the cut are not naturally sym-
metric so points O and G may be located anywhere with respect to the
trunk cross section, but θ is the angle that OG makes with the vertical and
is assumed initially to have a finite positive value α. Under the action of
gravity θ must increase with time. A contact force exists at O represented
by components N and V respectively perpendicular and parallel to OG, and
kinematics of circular motion gives the components of the acceleration of G
as hθ̈ and hθ̇2 also respectively perpendicular and parallel to OG. These di-
rections are therefore the natural choice in which to resolve force components
when writing the equations of motion. A gravitational force Mg acts verti-
cally at G. The portion of the tree above the cut has mass M and moment
of inertia about point O of IO. Newton’s equations of dynamic equilibrium
are described in any university introductory engineering dynamics text such
as that by Meriam and Kraige [2], and applied to this problem are

IOθ̈ = Mgh sin θ , (1)

Mhθ̈ = Mg sin θ − V , (2)

Mhθ̇2 = Mg cos θ −N , (3)

with initial conditions

θ(0) = α , (4)

θ̇(0) = 0 . (5)

We determine implicitly the time to separation by seeking as follows the
time variation of the trunk angle θ(t) and the angle θ = β at which the tree
separates from the stump.

Multiplying (1) by θ̇ and defining the constant

A =

√
IO
Mgh

(6)
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yields
A2θ̇θ̈ = θ̇ sin θ . (7)

Then integrate (7) with respect to time with initial conditions (4) and (5),

1

2
A2θ̇2 = cosα− cos θ . (8)

Substitute the value of θ̇2 thus obtained into the axial equilibrium equa-
tion (3) at the instant of separation of the tree from the stump, at which N =
0 , to give the angle of separation as

β = arccos

{
cosα

1 + IO/2Mh2

}
. (9)

I note that since cosα < 1 , IO = IG + Mh2 and IG , the mass moment of
inertia about the centre of gravity G, is always positive then β > arccos 2/3 '
48.2◦. This is an absolute lower bound. More realistic bounds (33) and (34)
are discussed in Section 5.

The remaining task is to solve equation (8) between the limits θ(0) = α
and θ(t) = β , hence determine t.

3 Analytic solution

I solve differential equation (8) by separation of variables,

A√
2

∫ β

α

dθ√
cosα− cos θ

=

∫ t

0

dt = t . (10)

Now with the change of variable θ = π−2φ and defining φ0 = (π−α)/2 = φ
at t = 0 ,

t =
A√
2

∫ π−β
2

π−α
2

−2 dφ
√

2
√

sin2 φ0 − sin2 φ
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=
A

sinφ0

{∫ π−α
2

0

dφ√
1−m sin2 φ

−
∫ π−β

2

0

dφ√
1−m sin2 φ

}

=
A

sinφ0

{
F

(
π − α

2
| m
)
− F

(
π − β

2
| m
)}

, (11)

where m = 1/ sin2 φ0 . Here t is expressed in terms of elliptic integrals of the
first kind F (ϕ | m) defined by Abramowitz and Stegun [1, §17.2].

It is usual to transform F so that 0 ≤ m ≤ 1 . I use the result F (ϕ|m) =
m−1/2F (θ | m−1) with sin θ = m1/2 sinϕ [1, §17.4.15]. After some simplifica-
tion,

t = A
{
F
(π

2
| cos2 α

2

)
− F

(
qβ | cos2 α

2

)}
= A

{
K
(

cos2 α

2

)
− F

(
qβ | cos2 α

2

)}
, (12)

where qβ = arcsin
(

cosβ/2
cosα/2

)
, A is given by (6) and K is the complete elliptic

integrals of the first kind [1, S17.3].

Further reduction using double angle formulas and the expression (9)
for β gives

qβ = arcsin

√
1 + cosα/

(
1 + IO

2Mh2

)
1 + cosα

. (13)

Thus the time to separation, normalised by A , is a function of IO/2Mh2

and α only.

4 Numerical solution

The analytic solution may be concisely coded in programs such as Matlab.
However, this work was undertaken for a client from a background without



4 Numerical solution C532

high level mathematical skills and with access only to spreadsheets to perform
computations. A numerical method was sought that

• was practical and easily used by non-mathematicians,

• was easily implemented in a spreadsheet, and

• gave appropriate accuracy bearing in mind the imprecise nature of the
input parameters.

Errors of less than 2% were deemed to meet or exceed the last criterion.

Traditional time stepping methods used for odes were considered unsuit-
able because they generally require a large number of time steps to achieve
reasonable accuracy, which would quickly clutter a spreadsheet, and they
would require interpolation or iteration as they do not in general explicitly
solve for t .

In contrast a method based on a truncated Taylor series proved ideal.

First, expand θ(t) = β as a Taylor series where t is time to separation,

β = θ(0) + θ̇(0) t+ θ̈(0)
t2

2
+ · · · . (14)

We have from (1) and (6) that θ̈ = sin θ/A2 , giving sufficient information
to express arbitrarily high order derivatives of θ in terms of θ and θ̇ . Up to
sixth order,

A2d
3θ

dt3
= cos θ θ̇ , (15)

A2d
4θ

dt4
= θ̈ cos θ − θ̇2 sin θ , (16)

A2d
5θ

dt5
=

d3θ

dt3
cos θ − 3θ̈θ̇ sin θ − θ̇3 cos θ , (17)
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A2d
6θ

dt6
=

d4θ

dt4
cos θ − 4

d3θ

dt3
θ̇ sin θ

− 6θ̈θ̇2 cos θ − 3θ̈2 sin θ + θ̇4 sin θ . (18)

Putting θ̇(0) = 0 and θ(0) = α reduces even derivatives at t = 0 to

d4θ(0)

dt4
=

1

A4
sinα cosα , (19)

d6θ(0)

dt6
=

1

A6
sinα(cos2 α− 3 sin2 α) , (20)

and odd derivatives vanish. Thus to sixth (or seventh) order

β = α + sinα
τ 2

2!
+ sinα cosα

τ 4

4!
+ sinα(cos2 α− 3 sin2 α)

τ 6

6!
, (21)

where I introduce dimensionless time τ = t/A .

If it is reasonable to assume that the tree does not lean substantially,
then the small α approximation may be used:

β ' α

{
1 +

τ 2

2!
+
τ 4

4!
+ (1− 3α2)

τ 6

6!

}
. (22)

4.1 Fourth order approximation

To fourth order the problem is described by the quadratic in τ 2

aτ 4 + bτ 2 + c = 0 , (23)

where

a =
sinα cosα

4!
, (24)

b =
sinα

2!
, (25)
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c = α− β . (26)

The time to separation may be obtained explicitly as the solution to (23).
Since c < 0 one of the roots τ 2 of (23) will be negative and not physically
meaningful, so the positive root is to be taken. However, the results by this
method differed from the analytic solution by up to 10% for typical input
parameters, so a higher order approximation was deemed necessary.

4.2 Sixth order approximation

Comparing (21) and (23), sixth order accuracy is obtained by replacing c
in (26) with

ci = α− β +
τ 6
i

6!
sinα(cos2 α− 3 sin2 α) . (27)

Solving the quadratic in τ 2 (23),

τi+1 =

√
6

cosα

(√
1− 2ci

3
cotα− 1

)1/2

. (28)

In this case it is necessary to iterate between (27) and (28) to obtain succes-
sive approximations τi . The initial approximation τ1 = 0 was used and 2–3
iterations were sufficient to confine errors to within 2%, requiring only 4–6
additional lines in the spreadsheet.

The sixth order small α approximation, after cancelling common factor α ,
is

a =
1

4!
, (29)

b =
1

2!
, (30)

c = 1− β

α
+
τ 6

6!
(1− 3α2) , (31)
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from which

τ =
√

6

(√
1− 2c

3
− 1

)1/2

. (32)

Three sources of error are present in this numerical method arising from

1. truncation of the Taylor series—sixth order terms were necessary and
in most cases sufficient to meet the accuracy criterion;

2. termination of the iteration between (31) and (32)—this error is easily
controlled, but 2–3 iterations were found sufficient to meet the accu-
racy criterion, and underrelaxation by averaging the new and old τ
accelerated convergence;

3. the small α approximation (if used)—this proved of no concern for α <
15◦.

Error results presented in Figure 4 are discussed in more detail below.

5 Results

Figure 2 shows theoretical dimensionless felling times computed analytically
by (12) for various initial and separation angles. Each value of β implies
a certain I0/Mh2 , not all of which are possible as noted in section 2. To
identify likely values of β consider IO/Mh2 in the denominator of (9) and
recall that IO = IG + Mh2 . A realistic but still conservative lower bound
for IG is obtained by assuming the tree to approximate a uniform slender rod
of length 2h , thus IG ≥Mh2/3 and from (9)

β ≥ arccos

(
cosα

5/3

)
≥ 53.13◦ . (33)
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Figure 2: Felling time as a function of β: Solid lines, constant α; Dashed
lines, constant IG/Mh2 .
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Figure 3: Felling times as a function of initial angle α for various IG/Mh2 .

If the tree is approximated as a uniform sphere of radius H , IG = 2
5
Mh2 and

β ≥ arccos(cosα/1.7) . However, as a practical upper bound for β I assume
α = 15◦ and a denominator of 2 in (9), corresponding to IG = Mh2 , giving

β ≤ arccos

(
cos 15◦

2

)
' 61.12◦ . (34)

Values within these limits are shown in Figure 2 by the dashed lines, rep-
resenting contours of constant IG/Mh2 within the above range. Note that
quite a narrow range of β results.

Figure 3 shows felling time as a function of initial angle and IG/Mh2 ,
which together are sufficient to uniquely determine it. We see perhaps sur-
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Figure 4: Error in computed felling times using the 6th order small α
approximation.

prisingly that the tree’s moment of inertia has relatively little influence on
the felling time, while as expected the felling time is strongly dependent on
the initial lean angle α .

Figure 4 shows that error in the sixth order small α approximation is
predominantly a function of α . For small α , τ increases rapidly and the
error therefore is dominated by the truncation of the Taylor series. The error
can be reduced if necessary by inclusion of higher order terms. For large α
the error is dominated by the small α approximation. This component can
be eliminated entirely by using the finite α form in which (27) and (28)
replace (31) and (32).
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6 Conclusion

The numerical method of Section 4 proved a simple and accurate means to
determine the time taken for a cut tree to fall to its point of separation from
the stump. In this method the time

t = Aτ(α, IO/Mh2) (35)

is fully specified by equations (6), (9), (31) and (32).

The method achieved the desired objectives that

• it does not require high level mathematical skills—it can be under-
stood using first year undergraduate mathematics and implemented
with much less;

• it is easily programmed in a spreadsheet;

• it introduces errors of less than 2% over a realistic range of inputs, which
is considerable less than the uncertaintly in the input parameters.
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