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A new analytical solution for testing debris
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Abstract

An analytical solution to a debris avalanche problem in the one
dimensional topography-linked coordinate system was found by Man-
geney, Heinrich, and Roche [Pure Appl. Geophys., 157:1081–1096,
2000]. We derive an analytical solution to a debris avalanche problem
in the standard Cartesian coordinate system. Characteristics and a
transformation technique obtain the analytical solution. This analyti-
cal solution is used to test finite volume methods with reconstruction
of the conserved quantities based on: either stage, height, and veloc-
ity; or stage, height, and momentum. Numerical tests show that the
finite volume method with reconstruction based on stage, height, and
momentum is slightly more accurate in solving the debris avalanche
problem.
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1 Introduction

We present an analytical solution to a debris avalanche problem (model) based
on the Saint–Venant approach. Using the Saint–Venant approach implies that
debris is treated as a depth averaged fluid. We use this analytical solution
as a benchmark to assess two finite volume methods applied to the model.
The considered problem is a simplification of real world scenarios on the
avalanches of debris, such as snow, sands, rocks, as well as landslides. In
other words, our work can be applied to these real world scenarios.

Three problems are considered. The first is the dam break problem in
the standard Cartesian coordinate system having initial condition shown in
Figure 1(a). This problem was solved by Ritter [8]. The second is the debris
avalanche problem in the topography-linked coordinate system having initial
condition illustrated in Figure 1(b). Mangeney et al. [5] proposed a solution
to this problem. The third is the debris avalanche problem in the standard
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(a) (b)

(c)

Figure 1: Initial conditions of
three considered problems: (a) a
dam break problem in the stan-
dard Cartesian coordinate system;
(b) a debris avalanche problem in the
topography-linked coordinate sys-
tem; (c) a debris avalanche problem
in the standard Cartesian coordinate
system.

Cartesian coordinate system having initial condition shown in Figure 1(c).
This third problem is the one we solve in this article.

2 Saint–Venant models

We review the Saint–Venant model in the standard Cartesian coordinate
system and the Saint–Venant model in the topography-linked coordinate
system.

In the standard Cartesian coordinate system, the mass and momentum
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differential equations governing the fluid motion are

ht + (hu)x = 0 , (1)

(hu)t +
(
hu2 + 1

2
gh2
)
x
= −ghzx + hF . (2)

These two equations are called the Saint–Venant model in the standard
Cartesian coordinate system. Here, x represents the one dimensional spatial
variable, t represents the time variable, u = u(x, t) denotes the fluid velocity,
h = h(x, t) denotes the fluid height (depth), z = z(x) is the topography
(bed), g is the acceleration due to the gravity, and F is a factor representing
a Coulomb-type friction. Note that we consider zx = tan θ , where θ is the
angle between the topography and the horizontal line; tan θ is called the bed
slope, while θ is called the bed angle. Equations (1) and (2) can be solved
using the characteristic relations [9]

C+ :
dx

dt
= u+ c , C− :

dx

dt
= u− c , (3)

in which the Riemann invariants k± are

u+ 2c−mt = k+ = constant along each curve C+, (4)

u− 2c−mt = k− = constant along each curve C−, (5)

where c =
√
gh and m = −g tan θ+ F .

The Saint–Venant model in the topography-linked coordinate system is

h̃t +
(
h̃ũ
)
x̃
= 0 , (6)(

h̃ũ
)
t
+
(
h̃ũ2 + 1

2
gh̃2 cos θ

)
x̃
= −gh̃ sin θ+ h̃F̃ . (7)

We use a tilde notation to identify variables in the topography-linked co-
ordinate system. Equations (6) and (7) can be solved using characteristic
relations

C̃+ :
dx̃

dt
= ũ+ c̃ , C̃− :

dx̃

dt
= ũ− c̃ , (8)
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in which the Riemann invariants k̃± are

ũ+ 2c̃− m̃t = k̃+ = constant along a curve C̃+, (9)

ũ− 2c̃− m̃t = k̃− = constant along a curve C̃−, (10)

where c̃ =

√
gh̃ cos θ and m̃ = −g sin θ+ F̃ .

3 Existing solutions

We review Ritter’s solution to the dam break problem [8] and the solution
due to Mangeney, Heinrich, and Roche for the debris avalanche problem [5].

Consider the dam break problem without friction on a horizontal bed in the
standard Cartesian coordinate system given in Figure 1(a). This problem
was solved analytically by Ritter [8] and Stoker [9]. Ritter’s solution is

u =
2

3

(x
t
− c0

)
, h =

1

9g

(x
t
+ 2c0

)2
, (11)

for −2c0t 6 x 6 c0t , where c0 =
√
gh0 .

Mangeney, Heinrich, and Roche (mhr) [5] derived an analytical solution to the
debris avalanche problem with friction in the topography-linked coordinate
system, as shown in Figure 1(b). The mhr solution is

ũ =
2

3

(
x̃

t
− c̃0 + m̃t

)
, h̃ =

1

9g cos θ

(
x̃

t
+ 2c̃0 −

1
2
m̃t

)2
. (12)

This solution is defined on the interval −2c̃0t +
1
2
m̃t2 < x̃ < c̃0t +

1
2
m̃t2,

where m̃ = −g sin θ+ F̃ and c̃0 =

√
gh̃0 cos θ .
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4 A new solution

This section derives an analytical solution to the debris avalanche problem in
the standard Cartesian coordinate system using two methods, namely, the
method of characteristics and a transformation technique.

Although the equations corresponding to the topography-linked coordinate
system allow large bottom slopes, due to the initial condition used by Man-
geney et al. [5], the mhr solution is accurate for mild slopes only. For steep
slopes, soon after the wall given in Figure 1(b) is removed, some material
around point T1 would fall down and collapse with some material from around
point O moving to the left. This supports the contention that the mhr
solution is not accurate for steep slopes.

Here, we derive an analytical solution to a debris avalanche problem with a
vertical wall on a sloping topography, as shown in Figure 1(c) in the standard
Cartesian coordinate system. Our analytical solution is valid for small slopes
only due to the Saint–Venant approach. However, the initial condition that
we use involves a vertical wall, which is physically more realistic as it is
more similar to some real world scenarios [1] than the problem considered by
Mangeney et al. [5]. Our derivation utilises properties of the characteristics
and follows closely the derivations of Mangeney et al. [5] and Stoker [9].

The debris avalanche (motion) at time t > 0 consists of three zones: zone I
is dry (debris free); zone II has a quadratic free surface; and zone III has a
linear free surface. This is illustrated in Figure 2. After the wall is removed,
the fluid in zone III moves with an acceleration a. To be consistent with
the approximate nature of our basic equations (1) and (2) for shallow waves
(consult the explanation of Dressler [3]), we take the horizontal acceleration
a = m .

On the rightmost characteristic curve C+ emanating from the origin, we have
a velocity u = at and relative wave speed c0 =

√
gh0 . So, at any point N on

that curve, we have a velocity u = atN and relative wave speed c = c0 where
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Figure 2: A debris avalanche and its characteristics.

tN is the time associated with point N. Now consider an arbitrary point M
in zone II such that tM > tN , where tM is the time associated with point M.
Since k− is constant along characteristic curve C− passing through points M
and N, and we have a = m , the velocity at point M is

u = 2c− 2c0 +mt , (13)

where tM is rewritten as t for simplicity. The slope

dx

dt
= u+ c = 3c− 2c0 +mt (14)
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is the slope of each characteristic curve C+ in the rarefaction fan. Since k+ is
constant along each curve defined by dx/dt = u+ c and since the velocity u
is given by (13), the relative wave speed c is constant along each curve in the
rarefaction fan. As a result, equation (14) can be integrated to get

c =
1

3

(x
t
+ 2c0 −

1
2
mt
)

, (15)

that is,

h =
1

9g

(x
t
+ 2c0 −

1
2
mt
)2

. (16)

Substituting (15) into (13), we obtain

u =
2

3

(x
t
− c0 +mt

)
. (17)

The fluid height must be nonnegative, so c > 0 , and from (15) we get
x > −2c0t +

1
2
mt2. This implies that the tract of the front wave is x =

−2c0t+
1
2
mt2. The tail wave follows the rightmost characteristic curve C+

emanating from the origin, and satisfies dx/dt = u+c = at+c0 . Integrating
this differential equation and using a = m , we find that the tract of the tail
wave is x = c0t+

1
2
mt2.

In summary, the analytical solution to the debris avalanche problem is (17)
and (16) for −2c0t+

1
2
mt2 6 x 6 c0t+ 1

2
mt2.

Alternatively, we derive (17) and (16) using a transformation as follows.
Substituting the new variables [3, 5]

ξ = x− 1
2
mt2, τ = t , υ = u−mt and H = h (18)

into (1) and (2), we obtain

Hτ + (υH)ξ = 0 , (19)

(Hυ)τ +
(
Hυ2 + 1

2
gH2

)
ξ
= 0 . (20)
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Therefore, for a given initial condition, if the solution to (19) and (20) is

υ = υ(ξ, τ) and H = H(ξ, τ), (21)

then the solution to (1) and (2) is

u(x, t) = υ (ξ, t) +mt and h(x, t) = H (ξ, t) . (22)

Employing this transformation together with Ritter’s solution (11) given in
Section 3, we get the solution (17) and (16).

5 Numerical tests

This section utilises our analytical solution to test a finite volume method
(fvm) used to solve the Saint–Venant model.

Audusse et al. [2] established that in order to resolve the solution accurately
at wet/dry interfaces, and to ensure that the fvm is well-balanced, stage
w := h + z and height h should be reconstructed. Therefore, here two
methods with reconstruction based on stage w and height h are considered.
We compare the performance of Method A (the fvm with reconstruction
based on stage w, height h, and velocity u) to that of Method B (the fvm
with reconstruction based on stage w, height h, and momentum p = hu) in
solving the debris avalanche problem.

Recall that Mangeney et al. [5] applied the Coulomb-type friction law

F̃ = −g cos θ tan δ sgn ũ , (23)

in which δ is a specified dynamic friction angle. We call tan δ the friction
slope. Following Mangeney et al. [5], we limit our discussion to the case when
the friction slope is not larger than the bed slope, that is, tan δ 6 tan θ . This
leads to sgn(u) = sgn(ũ) = −1 for t > 0 . Then the horizontal component F
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Table 1: Numerical settings in the simulations.
Description Specification
Units of the measured quantities si system
Acceleration g due to gravity 9.81
Minimum height allowed in the flux computation 10−6

Limiter for quantity reconstruction minmod
Courant–Friedrichs–Lewy number 1.0
Error quantification discrete L1

Spatial domain [−1000, 1000]
Initial fluid height h0 on the right of the wall 20

of F̃, which is taken as a definition of the friction in the standard Cartesian
coordinate system, is

F = g cos2 θ tan δ (24)

for t > 0 . Based on (23), at t = 0 , we have F = 0 because of the zero velocity.

In all simulations, the specification follows from our previous work [6], except
for the initial fluid height h0. We use the well-balanced finite volume scheme
proposed by Audusse et al. [2] and extended by Noelle et al. [7] with the second
order source, second order spatial, and second order temporal discretisations.
Note that the discretisation of the friction term hF included in the source at
the ith cell is hiF, where hi is the value of the numerical height at the centroid
of the cell and F is as in (24). The central upwind flux formulation proposed
by Kurganov, Noelle, and Petrova [4] is used to compute the numerical fluxes.
Table 1 gives details of the numerical settings.

We assumed that tan δ 6 tan θ . Consequently, we have three possible test
cases: 0 = tan δ = tan θ ; 0 = tan δ < tan θ ; and 0 < tan δ 6 tan θ . One
representative of each case is considered. First, we test the numerical methods
for a problem with friction slope tan δ = 0 and bed slope tan θ = 0 . The
errors for stage w and momentum p with various number of cells are presented
in Table 2. Second, we consider a problem with friction slope tan δ = 0 and
bed slope tan θ = 0.1 . The errors for stage w and momentum p with various
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Table 2: Errors for tan δ = 0 and tan θ = 0 at t = 15 .
Number w error p error
of cells A B A B
100 0.1074 0.1010 1.5234 1.4212
200 0.0511 0.0499 0.7162 0.7067
400 0.0254 0.0250 0.3537 0.3556
800 0.0127 0.0125 0.1771 0.1785
1600 0.0063 0.0063 0.0887 0.0894

number of cells are presented in Table 3. Finally, for the third case we consider
a problem with friction slope tan δ = 0.05 and bed slope tan θ = 0.1 . The
errors for stage w and momentum p with various number of cells are presented
in Table 4. For this third case, Figure 3 shows the debris avalanche consisting
of stage w and momentum p at time t = 15 using Method B with 800 cells.
Movies of the simulations using Method B are given in the supplementary
files dam-break.avi1, avalanche-frictionless.avi2, and avalanche-friction.avi3

respectively for the first, second, and third case simulated with 800 cells for
time t ∈ [0, 15]. Method A results in a similar figure and movies.

According to Tables 2–4, as the cell length is halved, the errors produced
by the fvms are halved. This suggests that we have only first order of
convergence, even though we used second order methods. The reason is that
a large error occurs around the front wave at the wet/dry interface; this is
called the wet/dry interface problem. This problem was also identified in the
simulations of Mangeney et al. [5]. Diffusion is also found around the tail
wave, but it is not as significant as that around the wet/dry interface. Based
on Tables 2–4, the error produced by Method B is slightly smaller than the

1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3785/697
2http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3785/695
3http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3785/696

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/697
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/695
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/696
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/697
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/697
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/695
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/695
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/696
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3785/696
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Table 3: Errors for tan δ = 0 and tan θ = 0.1 at t = 15 .
Number w error p error
of cells A B A B
100 0.1121 0.1006 1.8559 1.5028
200 0.0534 0.0501 0.8445 0.7428
400 0.0257 0.0250 0.3885 0.3695
800 0.0128 0.0126 0.1919 0.1846
1600 0.0064 0.0063 0.0956 0.0925

Table 4: Errors for tan δ = 0.05 and tan θ = 0.1 at t = 15 .
Number w error p error
of cells A B A B
100 0.1092 0.1010 1.4858 1.2775
200 0.0527 0.0504 0.6924 0.6402
400 0.0256 0.0251 0.3285 0.3204
800 0.0128 0.0126 0.1640 0.1611
1600 0.0064 0.0063 0.0823 0.0810

error produced by Method A in solving the debris avalanche problem.

6 Conclusions

We used a Saint–Venant approach in the standard Cartesian coordinate
system to solve the debris avalanche problem. The drawback of this approach
is that the solution is not physically valid for a very steep sloping topography.
Future research is to seek a better approach to solve the debris avalanche
problem analytically and to find a numerical technique that can be used to
resolve the wet/dry interfaces accurately. Our analytical solution might help
in developing a numerical scheme to resolve the solution at these interfaces.
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Figure 3: Avalanche with tan δ = 0.05 and tan θ = 0.1 at t = 15 .
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