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Abstract

A numerical scheme for the entropy of the one dimensional shallow
water wave equations is presented. The scheme follows from a well-
balanced finite volume method for the quantity vector having water
height and momentum as its components. The local truncation error
of the entropy is called the numerical entropy production, and can
be used to detect the location of a shock discontinuity. We show by
numerical tests that the numerical entropy production performs better
in detecting such a discontinuity than two local truncation errors of
the numerical quantity.
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1 Introduction

A smoothness indicator is always required by an adaptive numerical method
used to solve the shallow water wave equations over a given domain. The
smoothness indicator is applied to initiate an adaptive action to be undertaken
in some parts of the domain. We propose the numerical entropy production
as a smoothness indicator or a shock detector for shallow water flows. This
new application of the numerical entropy production is adapted from its
application to gas dynamics presented by Golay [4] and Puppo [8].

This is the first study to report the application of the numerical entropy
production as a smoothness indicator or a shock detector for shallow water
flows. The main result of our work is that the numerical entropy production
performs better in detecting a shock discontinuity in shallow water flows than
the smoothness indicators proposed by Karni, Kurganov and Petrova [5] and
Constantin and Kurganov [3].

We consider the one dimensional shallow water wave equations

qt + f(q)x = s , (1)
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in which

q =

[
h

hu

]
, f =

[
hu

hu2 + 1
2
gh2

]
, and s =

[
0

−ghzx

]
, (2)

are respectively the conservative quantity, the flux, and the source term
vectors. Here, x represents the one dimensional spatial variable, t represents
the time variable, u = u(x, t) denotes the water velocity, h = h(x, t) denotes
the water height (depth), z = z(x) denotes the topography (bed) elevation,
w := h+ z is the stage, and g is the acceleration due to gravity.

2 A well-balanced scheme

With appropriate initial and boundary conditions, a finite volume method
solves the shallow water wave equations (1) numerically. Suppose at the
(i + 1

2
)th interface between the ith and (i + 1)th cells, we have used a

standard technique to reconstruct the values of water depth hi,r and bed zi,r
on the right edge of the ith cell and those of water depth hi+1,l and bed zi+1,l
on the left edge of the (i+ 1)th cell.

Following Audusse et al. [1] and Noelle et al. [7], we introduce new recon-
structed values of z and h at the (i+ 1

2
)th interface

z∗
i+ 1

2
:= max{zi,r, zi+1,l}, (3)

h∗
i,r := max{0,hi,r + zi,r − z

∗
i+ 1

2
}, (4)

h∗
i+1,l := max{0,hi+1,l + zi+1,l − z

∗
i+ 1

2
}, (5)

as the hydrostatic reconstruction, which leads to the auxiliary values Q∗ =
(h∗,h∗u).

A semi-discrete well-balanced finite volume scheme for the conserved quan-
tity q is

∆xi
d

dt
Qi + Fr(Qi,Qi+1, zi,r, zi+1,l) − Fl(Qi−1,Qi, zi−1,r, zi,l) = S

(j)
i , (6)
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where the right and left numerical fluxes of the ith cell are

Fr(Qi,Qi+1, zi,r, zi+1,l) := F(Q∗
i,r,Q

∗
i+1,l) +

[
0

1
2
gh2i,r −

1
2
g(h∗

i,r)
2

]
, (7)

and

Fl(Qi−1,Qi, zi−1,l, zi,r) := F(Q∗
i−1,r,Q

∗
i,l) +

[
0

1
2
gh2i,l −

1
2
g(h∗

i,l)
2

]
, (8)

calculated at xi+1/2 and xi−1/2 respectively. Here, Q is the approximation
of the vector q, and F is a conservative numerical flux consistent with the
homogeneous shallow water wave equations computed in such a way that the
method is stable. In the numerical simulations presented in Section 4, we take
the conservative numerical flux F due to Kurganov, Noelle, and Petrova [6].

The index j of S
(j)
i in equation (6) denotes the order of the numerical source

term, where a second order numerical source term is

S
(2)
i :=

[
0

1
2
g(hi,l + hi,r)(zi,l − zi,r)

]
. (9)

Section 3 presents a numerical scheme for the evolution of the entropy η and
the definition of the numerical entropy production. To apply the numerical
entropy production as a smoothness indicator or a shock detector, taking
a well-balanced scheme is not a must. However, in this work we choose a
well-balanced scheme because it is more robust than a standard scheme in
solving the shallow water wave equations, in that it preserves a steady state
of ‘a lake at rest’ [7].

3 Numerical entropy production

Bouchut [2] showed how to derive an entropy inequality from the shallow water
wave equations (1) by simple algebraic operations. The entropy inequality is

ηt +ψx 6 0 , (10)
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where

η (q) =
1

2
hu2 +

1

2
gh2 + ghz and ψ (q) =

1

2
hu3 + gh2u+ ghzu (11)

are the entropy and the entropy flux for the shallow water wave equations (1).
For smooth solutions, which are without discontinuities, the entropy inequal-
ity (10) becomes an equality, called the entropy equation. For solutions with
discontinuities, the entropy inequality (10) becomes a strict inequality.

The evolution of the entropy η together with the evolution of the conserved
quantity q can be used to detect the location of shock waves accurately. For
the evolution of the entropy η, we adopt the semi-discrete scheme (6) with the
numerical entropy Θ, the numerical entropy fluxes Ψr, Ψl, and the numerical
source 0 in place of the numerical quantity Q, the numerical quantity fluxes Fr,
Fl, and the numerical source S

(j)
i respectively. Therefore, given the value of

Θn−1i := η
(
Qn−1
i

)
, we take a semi-discrete scheme

∆xi
d

dt
Θi + Ψ

r(Qi,Qi+1, zi,r, zi+1,l) − Ψ
l(Qi−1,Qi, zi−1,r, zi,l) = 0 (12)

to obtain the value of Θni , where

Ψr(Qi,Qi+1, zi,r, zi+1,l) := Ψ(Q
∗
i,r,Q

∗
i+1,l, z

∗
i+1/2) (13)

and Ψl(Qi−1,Qi, zi−1,l, zi,r) := Ψ(Q
∗
i−1,r,Q

∗
i,l, z

∗
i−1/2) (14)

are the right and left numerical entropy fluxes of the ith cell calculated at xi+1/2
and xi−1/2 respectively. Here, Θ is the approximation of the entropy η, and
Ψ is a consistent numerical entropy flux in the sense that Ψ(Q,Q) = Ψ(Q)
(Tadmor [10] gives more details on a consistent numerical entropy flux). As in
scheme (6), we use the auxiliary values Q∗ instead of the true values Q. At
the (i+ 1

2
)th interface, the transferred entropy is accounted for by heights h∗

i,r

and h∗
i+1,l together.

The numerical entropy production is then defined by

Eni =
1

∆t
[η (Qn

i ) −Θ
n
i ] , (15)
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which is the local truncation error of the entropy. Here, ∆t is the time step
used in solving the semi-discrete odes (6) and (12).

The order of accuracy for the numerical entropy production (15) in a rough
region (nonsmooth solution) is lower than the order of accuracy in a smooth
region (smooth solution) [9]. As a result, the values of the numerical entropy
production in the region of a shock discontinuity are larger than the values
in smooth regions. This property makes the numerical entropy production a
good candidate as a smoothness indicator or a shock detector.

4 Numerical tests

We consider one test involving a moving shock and another test involving a
stationary shock in order to judge the performance of the numerical entropy
production in detecting shocks. In addition, a test exhibiting a shock-like
detection is also considered. We compare the performance of the numerical
entropy production (nep) given by (15) to Karni, Kurganov, and Petrova’s
(kkp) local truncation error [5] of the mass of water and Constantin and
Kurganov’s (ck) local truncation error [3] of the mass of water. The kkp
indicator is defined at (x, t) = (xi, t

n) by

Eni = 1
12

{
∆x
[
hn+1i+1 − hn−1i+1 + 4

(
hn+1i − hn−1i

)
+ hn+1i−1 − hn−1i−1

]
+ ∆t

[
hn+1i+1 u

n+1
i+1 − hn+1i−1 u

n+1
i−1 + 4

(
hni+1u

n
i+1 − h

n
i−1u

n
i−1

)
+ hn−1i+1 u

n−1
i+1 − hn−1i−1 u

n−1
i−1

]}
, (16)

whereas the ck indicator is defined at (x, t) = (xi+1/2, t
n−1/2) by

E
n−1/2
i+1/2 = 1

2

{
∆x
[
hni − h

n−1
i + hni+1 − h

n−1
i+1

]
+ ∆t

[
hn−1i+1 u

n−1
i+1 − hn−1i un−1i + hni+1u

n
i+1 − h

n
i u

n
i

]}
. (17)

The order of accuracy for the kkp indicator (16) in a rough region is lower
than the order of accuracy in a smooth region [5], and the same is true [3]
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for the ck indicator (17). Therefore, the kkp and ck indicators can also be
used as smoothness indicators or shock detectors.

In the tests, we use the flux function due to Kurganov et al. [6] for the
numerical evolution of the conserved quantity q and the entropy η. This flux
function is defined for homogeneous conservation laws. Since Kurganov et
al. [6] explicitly presented the flux for the numerical evolution of the conserved
quantity q, here we write only the flux for the numerical evolution of the
entropy η. The flux for the numerical evolution of the entropy η at the(
i+ 1

2

)
th interface is

Ψi+ 1
2
(t) =

a+
i+ 1

2

ψ(q−
i+ 1

2

) − a−
i+ 1

2

ψ(q+
i+ 1

2

)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

[
η
(
q+
i+ 1

2

)
− η

(
q−
i+ 1

2

)]
(18)

where

a+
i+ 1

2

= max

{
u−
i+ 1

2

+

√
g
(
h−
i+ 1

2

)∗
,u+

i+ 1
2

+

√
g
(
h+
i+ 1

2

)∗
, 0

}
, (19)

a−
i+ 1

2

= min

{
u−
i+ 1

2

−

√
g
(
h−
i+ 1

2

)∗
,u+

i+ 1
2

−

√
g
(
h+
i+ 1

2

)∗
, 0

}
, (20)

and the starred variables follow from the hydrostatic reconstruction (3)–(5).
In addition,

q+
i+ 1

2

= pi+1(xi+ 1
2
, t) and q−

i+ 1
2

= pi(xi+ 1
2
, t) (21)

are the right and the left values at x = xi+1/2 of a conservative non-oscillatory
piecewise polynomial interpolated vector

q̃(x, t) =
∑
i

pi(x, t)Xi , (22)
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reconstructed at each time step based on the previously computed cell averages,
{Qn

i (t)}, where

Qn
i (t) =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn)dx . (23)

The set {pi(·, t)} consist of vectors with polynomials of a given degree as their
components, and Xi is the characteristic function for the ith cell.

In all our simulations, the numerical setting is as follows. We use the second
order source, second order spatial, and second order temporal discretisations.
Quantities are measured in si units. The acceleration due to gravity is taken
as g = 9.81m/s2. The minimum fluid height allowed in the flux computation
is hmin = 10−6 m. The minmod limiter is used for quantity reconstruction.
The cfl number is 1.0 . The spatial domain is uniformly discretised into
400 cells.

4.1 Moving shock in a dam break problem

As the first test problem, we consider the collapse of a reservoir on a horizontal
topography

z(x) = 0 , 0 < x < 2000 , (24)

and an initial condition

u(x, 0) = 0 , w(x, 0) =


0, if 0 < x < 500 ,
10, if 500 < x < 1500 ,
5, if 1500 < x < 2000 .

(25)

The simulation illustrates the motion of the water at any point x in the domain
and at any time t > 0 from the initial condition (25). The condition (25)
means that two dam walls (at x = 500 and x = 1500) are given initially.

Figure 1 shows the simulated water surface (stage) at time t = 20 . Also
shown in Figure 1 are the corresponding ck, kkp, and nep indicators. These
results indicate the superiority of the numerical entropy production as a shock
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Figure 1: A moving shock after dam break at t = 20 . Stage w is the free
surface; ck is as in (17); kkp is as in (16); nep is as in (15).
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detector, when the problem has an unsteady state solution. The magnitude
of the nep is large around the location of the shock and almost zero on the
rest of the spatial domain, whereas the ck and the kkp indicators, although
large around the location of the shock, also exhibit obvious ripples away from
the shock in this test case. Sharp curves of the ck, kkp, and nep indicators
occur only on the region corresponding to the shock, because, as mentioned
above, the orders of accuracy of the indicators are lower at the region of
the shock than in smooth regions. The supplementary file moving-shock.avi1

contains a movie of this first simulation for time t ∈ [0, 20].

4.2 Stationary shock on a parabolic obstruction

As the second test problem, we consider a channel of length 25 with topography
(having a parabolic bump)

z(x) =

{
0.2− 0.05 (x− 10)2 , if 8 6 x 6 12 ,
0, otherwise,

(26)

and initial condition

u(x, 0) = 0 , w(x, 0) = 0.33 , (27)

together with the Dirichlet boundary conditions[
w hu z h u

]
=
[
0.42 0.18 0.0 0.42 0.18/0.42

]
at x = 0−, (28)[

w hu z h u
]
=
[
0.33 0.18 0.0 0.33 0.18/0.33

]
at x = 25+.

(29)

Physically, the boundary conditions mean that there is a source of flow
upstream quantified by (28) at the point x = 0− and at the same time there
exists a sink of flow downstream quantified by (29) at the point x = 25+.

1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3786/698

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3786/698
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3786/698
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Figure 2: A stationary shock over a parabolic obstruction at t = 50 . Stagew
is the free surface; nep is as in (15). The notation 10̂ 5 ck and 10̂ 5 kkp
mean 105 times ck and 105 times kkp respectively, where ck is as in (17)
and kkp is as in (16).
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Figure 2 shows the steady state water surface as well as the corresponding
ck, kkp, and nep indicators at time t = 50 . These results demonstrate the
superiority of the numerical entropy production as a shock detector, when
the problem has a steady state solution. The magnitude of the nep is large
around the location of the shock and approximately zero on the rest of the
spatial domain, whereas the ck and the kkp indicators, although large around
the location of the shock, also exhibit small ripples on the location of the
parabolic bump in this test case. The supplementary file steady-shock.avi2

contains a movie of this second simulation for time t ∈ [0, 100].

4.3 Shock-like detection

Care should be taken in the interpretation of these indicators because false
shocks may be detected. For example, in our third test problem we consider
the initial condition (27) together with the Dirichlet boundary condition (28)
and[

w hu z h u
]
=
[
0.1 0.18 0.0 0.1 0.18/0.1

]
at x = 25+. (30)

As in the second test problem, these boundary conditions mean that there is
a source of flow upstream quantified by (28) at the point x = 0− and at the
same time there exists a sink of flow downstream quantified by (30) at the
point x = 25+.

In the simulation of this test, a moving shock is detected before the flow is
steady. Figure 3 captures the stage as well as the ck, kkp, and nep indicators
at time t = 30 . The shock moves to the right as the time evolves. On the
interval where the parabolic obstruction is located, all three smoothness
indicators produce some ripples. Those ripples are much smaller in magnitude
than the indicator of the moving shock. Once the moving shock has gone from

2http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3786/699

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3786/699
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3786/699
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Figure 3: A moving shock on the right of a parabolic obstruction at t = 30 .
Stage w is the free surface; ck is as in (17); kkp is as in (16); nep is as
in (15).
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the spatial domain of interest, those ripples behave like an indication of a
shock since they dominate the values presented by the smoothness indicators.

Figure 4 shows this shock-like behaviour, which captures the stage as well
as the ck, kkp, and nep indicators at time t = 50 . We stress that this
shock-like feature is detected with a very small magnitude of indication, which
suggests that this detection is actually not a shock. In addition, the nep
performs better because a ‘corner’ is found on the stage at the corresponding
position of the large value of the nep detector, while the ck and kkp do not
detect this ‘corner’. The supplementary file shock-like.avi3 contains a movie
of this third simulation for time t ∈ [0, 100].

5 Conclusions

The numerical entropy production provides a good indicator of the smoothness
of the water surface profile, and can be used to identify the location of a shock.
It performs better than two local truncation errors of the numerical quantity,
in that the magnitude of the numerical entropy production is large around the
location of a shock and almost zero on the rest of the spatial domain, whereas
the two local truncation errors, although large around the location of the
shock, also exhibit obvious ripples for continuous solutions. Future research
will implement the numerical entropy production as a smoothness indicator
for an adaptive finite volume method used to solve the shallow water wave
equations.
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3http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/3786/700
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Figure 4: A steady flow without a shock at t = 50 . Stage w is the free
surface; ck is as in (17); kkp is as in (16); nep is as in (15).
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