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Abstract

We consider time-space fractional reaction diffusion equations in
two dimensions. This equation is obtained from the standard reaction
diffusion equation by replacing the first order time derivative with the
Caputo fractional derivative, and the second order space derivatives
with the fractional Laplacian. Using the matrix transfer technique
proposed by Ilić, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333–
349, 2006] and the numerical solution strategy used by Yang, Turner,
Liu, and Ilić [SIAM J. Scientific Computing, 33:1159–1180, 2011], the
solution of the time-space fractional reaction diffusion equations in
two dimensions can be written in terms of a matrix function vector
product f(A)b at each time step, where A is an approximate matrix
representation of the standard Laplacian. We use the finite volume
method over unstructured triangular meshes to generate the matrix A,
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which is therefore non-symmetric. However, the standard Lanczos
method for approximating f(A)b requires that A is symmetric. We
propose a simple and novel transformation in which the standard
Lanczos method is still applicable to find f(A)b, despite the loss of
symmetry. Numerical results are presented to verify the accuracy and
efficiency of our newly proposed numerical solution strategy.
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1 Introduction

The theory of derivatives of fractional order has a long history. The concept
is almost as old as its more familiar integer order counterpart. For three
centuries the theory of fractional derivatives was considered a field for pure
mathematicians. However, in the last few decades, fractional calculus gained
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considerable popularity and importance among applied mathematicians, due
to its demonstrated applications in fields such as electricity, chemistry, biology,
economics, modelling, identification, control theory and signal processing [1,
4, 8]. It is important to investigate the solution behaviour of these fractional
models and to explore their applications.

We consider the following two dimensional time-space fractional reaction
diffusion equation (tsfrde-2d) with homogeneous Dirichlet or Neumann
boundary conditions

tD
γ
∗u = −Kα(−∇2)α/2u+ g(u), (x,y) ∈ Ω , t > 0 , (1)

where u(x,y, t) is (for example) a concentration and Kα is the diffusion
coefficient. The Caputo time fractional derivative of order γ (0 < γ 6 1)
with starting point at time t = 0 is defined [6] as

tD
γ
∗u(x,y, t) =

1

Γ(1− γ)

∫ t
0

ut(x,y,η)

(t− η)γ
dη , 0 < γ < 1 , (2)

with tD
γ
∗u = ∂u/∂t for γ = 1 . The space fractional derivative (−∇2)α/2 of

order α (1 < α 6 2) is a fractional Laplacian operator defined through its
eigenfunction expansion on the finite domain Ω [3, 12, 13]. The nonlinear
reaction term g(u) is assumed to be Lipschitz continuous.

To solve the tsfrde-2d, we first introduce a mesh and discretise in space
to obtain an approximate matrix representation A of the Laplacian (−∇2).
Using the matrix transfer technique proposed by Ilić et al. [3], equation (1) is
transformed into a system of time fractional differential equations involving
the matrix A raised to the fractional index α/2

tD
γ
∗u = −KαA

α/2u + g(u) . (3)

We use a finite difference method in time to handle the Caputo fractional
derivative, which necessitates the computation of a matrix function vector
product f(A)b at each time step, where b is a suitably defined vector.
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Previously Yang et al. [13] successfully solved the two dimensional time-space
fractional diffusion equation using Lanczos-based methods to approximate
the action of the matrix function f(A). When A is generated from the finite
difference method, it is symmetric and hence the standard Lanczos method
applies. When A is generated from the finite element method, it becomes
non-symmetric due to the influence of the mass matrix. In this case, the
M-Lanczos method [9] has been applied.

Now, we consider generating the matrix A using the finite volume method.
Although the matrix is again non-symmetric, we outline a novel way in which
the standard Lanczos method still can be used to apply the required matrix
functions. We illustrate our proposed numerical strategy on several test
problems, including a fractional Fisher’s equation on a disk.

2 Numerical scheme

We present the numerical scheme to simulate the solution behaviour of the
tsfrde-2d. Section 2.1 discusses the finite volume spatial discretisation
for the non-fractional equation, and then Section 2.2 shows how to extend
this discretisation to the fractional case using the matrix transfer technique.
Section 2.3 discusses the discretisation of the Caputo time fractional derivative.
Finally, Section 2.4 shows how these discretisations are combined in the final
numerical scheme.

2.1 Finite volume method for spatial discretisation

The vertex centred finite volume method, also known as the control volume
finite element (cv-fe) method, begins with a standard finite element mesh
which is a partition of the domain Ω. We consider unstructured triangular
meshes.
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Let the number of nodes in the mesh be denoted N. Around each node, a
control volume (cv) is constructed by connecting element centroids to face
midpoints [2]. This generates a dual mesh of control volumes, and we denote
by Vi the ith cv, which has volume1 ∆Vi. These cvs form a partition of the
domain Ω, so that Ω =

⋃N
i=1 Vi .

The cv faces are denoted by Aj, for j = 1 . . .Ncvf , where Ncvf is the number
of cv faces in the mesh, and the area2 of cv face Aj is ∆Aj. We let Fi denote
the set of indices of the cv faces that comprise the boundary Γi of Vi.

In deriving the finite volume discretisation of (1), we first consider the simpler,
non-fractional equation

∂u

∂t
= −Kα(−∇2u) + g(u) , (4)

with homogeneous Dirichlet or Neumann boundary conditions. The method
proceeds by integrating (4) over control volume Vi:

d

dt

∫
Vi

u dV = −Kα

∫
Γi

(−∇u · n̂) dσ+

∫
Vi

g(u) dV , (5)

where the order of differentiation and integration has been interchanged
on the left, and the divergence theorem applied to the first term on the
right. Denoting by ui the (approximate) numerical solution at the ith node,
substitute

∫
Vi
udV = ∆Vi ui and

∫
Vi
g(u)dV = ∆Vi g(ui). Furthermore,

approximate the surface integral by the sum of midpoint rule approximations
over each face, to obtain

∆Vi
dui

dt
= −Kα

∑
j∈Fi

(−∇u · n̂)mpj ∆Aj + ∆Vi g(ui) (6)

where mpj is the midpoint of the jth cv face.

1Area, for two dimensional problems.
2Length, for two dimensional problems.
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To approximate the flux at the cv face midpoint, interpolation is required.
The cv-fe method uses the underlying finite element mesh as the mechanism
for this interpolation. Within each element, the standard shape functions
are used to construct an interpolant, and the gradient of this interpolant is
evaluated at the cv face midpoint to find the necessary fluxes [2].

In this way, the expression for the total flux through the cv boundary Γi
depends on the nodal value ui, as well as on the values uj for any node j
that shares an element with node i. Applying (6) for each cv in the mesh, a
system of differential equations is obtained

M
du

dt
= −KαKu + Mg(u) (7)

where u = (u1,u2, . . . ,uN) is the vector of nodal solution values. The
matrix M is diagonal with its diagonal entries the volumes of each cv. The
matrix K is sparse and symmetric, and its elements represent the contributions
from each node to the total flux across each cv boundary.

Writing equation (7) as

du

dt
= −KαAu + g(u) ,

and comparing it with (4), we identify

A = M−1K (8)

as the approximate matrix representation of the Laplacian (−∇2) under the
cv-fe discretisation. Interestingly, although (−∇2) is a self-adjoint operator,
its cv-fe matrix representation A is non-symmetric.

2.2 Matrix transfer technique for fractional Laplacian

Under the matrix transfer technique proposed by Ilić et al. [3], the fractional
Laplacian is approximated by

(−∇2)α/2u ≈ Aα/2u . (9)
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Hence, the tsfrde-2d (1) is transformed into a system of time fractional
differential equations as described in (3).

Although A is sparse, Aα/2 will typically be dense. Fortunately, as discussed
by Section 3, this matrix never needs to be formed, as only the action of a
matrix function on a suitably chosen vector is required. We also emphasise
that this representation assumes that homogeneous Dirichlet or Neumann
conditions are imposed on the boundary. Extensions of this approach to
non-homogeneous boundary conditions are discussed by Ilić et al. [3], but are
not considered here.

2.3 Finite difference method for the time fractional
derivative

Define times tn := nτ, n = 0, 1, 2, . . . , where τ is the time step. The Caputo
time fractional derivative tD

γ
∗u is discretised using the implicit scheme [5]

tD
γ
∗u(tn) ≈

1

µ0

n−1∑
j=0

bj[u(tn−j) − u(tn−j−1)] , (10)

where µ0 = τ
γΓ(2− γ) and bj = (j+ 1)1−γ − j1−γ, j = 0, 1, 2, . . . ,n− 1 .

2.4 Numerical scheme for the TSFRDE-2D

Incorporating the approximations of the fractional Laplacian (9) and of
the Caputo time fractional derivative (10), and treating the source term
explicitly [11], we obtain the numerical approximation of the tsfrde-2d (1)

1

µ0

n−1∑
j=0

bj[u
n−j − un−1−j] = −KαA

α/2un + g(un−1) , (11)
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where un ≈ u(tn). After some further manipulations, (11) reads

un =
[
I + µ0KαA

α/2
]−1 [n−2∑

j=0

(bj − bj+1)u
n−1−j + bn−1u

0 + g(un−1)

]
. (12)

Defining the scalar function f(ξ) =
[
1+ µ0Kαξ

α/2
]−1

, we obtain the numerical
scheme for approximating the tsfrde-2d (1) as

un = f(A)bn, with bn =

n−2∑
j=0

(bj − bj+1)u
n−1−j + bn−1u

0 + g(un−1) , (13)

where u0 is the discrete representation of the initial value u(x,y, 0).

Remark Equation (13) is for the case 0 < γ < 1 . For the non-fractional
case γ = 1 , the temporal discretisation (10) should be replaced with the
standard backward Euler scheme. Alternatively, a value γ = 1− ε , for some
small ε, can be used in the numerical scheme (13).

3 Matrix function approximation and

solution strategy

We show how the matrix function vector product f(A)bn can be approxi-
mated at each time step without forming the (dense) matrix function f(A).
The prevailing method for approximating the matrix function vector prod-
uct f(A)b for a scalar, analytic function f : D ⊂ C → C is the Lanczos
approximation [7, 10]

f(A)b ≈ ‖b‖Vmf(Tm)e1 , b = ‖b‖Vme1 , (14)

where

AVm = VmTm + βmvm+1e
T
m (15)
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is the Lanczos decomposition and the columns of Vm form an orthonormal
basis for the Krylov subspace Km(A, b) = span{b, Ab, . . . , Am−1b}, with
m� N .

If A is symmetric, then the matrix Tm ∈ Rm×m is symmetric and tridi-
agonal. Hence the required matrix function f(Tm) is efficiently found by
diagonalising Tm. However, equation (8) shows that under the cv-fe spatial
discretisation the matrix A is not symmetric, even though both M and K are
symmetric. We now outline a simple and novel transformation that allows
the standard Lanczos method to be used to find f(A)b, despite the loss of
symmetry.

First, we observe that A is similar to a symmetric matrix Ã, since

A = M−1K = M−1/2M−1/2KM−1/2M1/2 = M−1/2ÃM1/2 ,

where Ã = M−1/2KM−1/2 is symmetric. Let Ã = P̃DP̃T be an orthogonal
diagonalisation of Ã. Then we find a diagonalisation of A as

A = M−1/2ÃM1/2 = M−1/2P̃DP̃TM1/2 = (M−1/2P̃)D(M−1/2P̃)−1 ,

and hence A = PDP−1 where P = M−1/2P̃. With this result, we now relate
the two matrix functions f(A) and f(Ã)

f(A) = Pf(D)P−1 = M−1/2P̃f(D)(M−1/2P̃)−1

= M−1/2P̃f(D)P̃TM1/2 = M−1/2f(Ã)M1/2 . (16)

Hence, the solution (13) is computed as

un = f(A)bn = M−1/2f(Ã)M1/2bn = M−1/2f(Ã)b̃ , (17)

where b̃ = M1/2bn and the symmetric matrix function vector product f(Ã)b̃
is computed using the standard Lanczos method. We emphasise again that
neither A nor Ã is formed during the algorithm.
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Table 1: Spatial and temporal errors at time t = 0.01 with α = 1.3 and
γ = 0.5 .

h Spatial error τ Temporal error
0.1253 1.7e−4 0.001 4.8e−4
0.0676 5.7e−5 0.0005 2.3e−4
0.0342 1.7e−5 0.00025 1.1e−4
0.0176 4.6e−6 0.000125 5.6e−5
0.0091 1.2e−6 0.0000625 2.7e−5
Order 2.0 Order 1.0

4 Numerical results

Numerical experiments were carried out to assess the computational perfor-
mance and accuracy of our solution strategy, as well as to illustrate the effect
of the fractional order on the solution.

Example 1 Consider the tsfrde-2d (1) on the domain Ω = [0, 1]× [0, 1]
with Kα = 1 , g(u) = 0 , initial condition u0(x,y) = xy(1 − x)(1 − y) and
boundary conditions u = 0 on ∂Ω.

With g(u) = 0 , the tsfrde-2d becomes linear. The analytical solution of
this linear time-space fractional diffusion equation is [13]

u(x,y, t) =

∞∑
n=1

∞∑
m=1

Eγ
(
−λα/2n,mt

γ
)
cn,mϕn,m , (18)

where λn,m = n2π2 +m2π2 and ϕn,m = 2 sin(nπx) sin(mπy) are the eigen-
values and eigenfunctions of the two dimensional Laplacian (−∇2), cn,m =∫1
0

∫1
0
xy(1 − x)(1 − y)ϕn,m dydx are the Fourier coefficients of the initial

condition, and Eγ(·) is the Mittag–Leffler function.

To identify the order of convergence in space, in the second column of Table 1,
we compute the maximum errors in the numerical solution at time t = 0.01 ,
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with α = 1.3 and γ = 0.5 , for a sequence of refined meshes with 328, 1 342,
5 422, 21 962 and 88 790 elements, and a small time-step (τ = 5× 10−6). The
convergence in space is estimated to be O(h2), where h is the maximum
element diameter. This is consistent with the standard result for cv-fe
applied to the non-fractional Laplacian [2].

To identify the order of convergence in time, in the fourth column of Table 1,
we present the maximum errors in the numerical solution at time t = 0.01
on the finest mesh with 88 790 elements (h = 0.0091), α = 1.3 , and γ = 0.5 .
The convergence in time-step is estimated to be O(τ).

Example 2 To illustrate the effect of the fractional order in space, we
consider the population dynamics of bacteria growing in a Petri dish. One
model of this process is Fisher’s equation, for which we take the tsfrde-
2d (1) on the domain Ω = {(x,y) | x2 + y2 6 1}, g(u) = u(1 − u), and
∂u/∂n = 0 on ∂Ω. Here, u represents the concentration of bacteria.

We discretise the unit disk using an unstructured triangular mesh with
2900 elements, and place a small initial concentration of 0.01 at the node
closest to (0.1,−0.1). Holding γ = 1 , we compare the evolution of the
fractional diffusion model (α = 1.5) and the standard diffusion model (α =
2.0). The diffusion coefficients are taken to be Kα = 5 × 10−4 and Kα =
16 × 10−4 respectively, so that both models reach 80% of their carrying
capacity at approximately the same time.

Figure 1 illustrates the spatial distribution of concentration of both models at
two points in time. At early time, the sharper profile of the fractional diffusion
model is evident, while the standard diffusion model exhibits the expected
Gaussian-like profile. The late time profiles correspond to the time at which
both models reached 80% of their carrying capacity. The increased growth
of the fractional diffusion model near the boundaries is due to its heavier
tailed diffusion, resulting in more concentration reaching the extremities of
the domain and promoting growth there. For the standard diffusion model,
there is a larger region of high concentration in the interior, but less growth
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Figure 1: Spatial distribution of concentration at early time (top) and
late time (bottom) for α = 1.5 , Kα = 5 × 10−4 (left) and α = 2.0 , Kα =
16×10−4 (right). The movie video.avi shows a side-by-side comparison of the
two [http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/3791/832].

towards the boundaries. The impact of the initial concentration being placed
slightly off-centre is also much more evident in the standard model.

5 Conclusions

We demonstrate a novel approach for solving time-space fractional reaction
diffusion equations in two dimensions. In particular, our approach allows the
standard Lanczos method to be used to approximate the required matrix

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3791/832
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3791/832
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/3791/832
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function vector products, even though the cv-fe matrix representation of
the Laplacian is nonsymmetric. The method recovers the expected second
order spatial and first order temporal accuracy when applied to a linear test
problem. A model simulating bacteria growing in a Petri dish illustrates
some interesting population dynamics that can be modelled using a fractional
reaction diffusion equation.
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