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Abstract

The lasso algorithm for variable selection in linear models, intro-
duced by Tibshirani, works by imposing an l1 norm bound constraint
on the variables in a least squares model and then tuning the model
estimation calculation using this bound. This introduction of the
bound is interpreted as a form of regularisation step. It leads to a form
of quadratic program which is solved by a straight-forward modifica-
tion of a standard active set algorithm for each value of this bound.
Considerable interest was generated by the discovery that the complete
solution trajectory parametrised by this bound is piecewise linear and
can be calculated very efficiently. Essentially it takes no more work
than the solution of either the unconstrained least squares problem
or the quadratic program at a single bound value. This has resulted
in the study both of the selection problem for different objective and
constraint choices and of applications to such areas as data compres-
sion and the generation of sparse solutions of very under-determined
systems. One important class of generalisation is to quantile regression
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estimation problems. The original continuation idea extends to these
polyhedral objectives in an interesting two phase procedure which
involves both the constrained and Lagrangian forms of the problem
at each step. However, it is significantly less computationally effective
than is the original algorithm for least squares objectives. In contrast,
the piecewise linear estimation problem can be solved for each value of
the l1 bound by a relatively efficient simplicial descent algorithm, and
that this can be used to explore trajectory information in a manner
which is at least competitive with the homotopy algorithm in this
context. The form of line search used in the descent steps has an
important bearing on the effectiveness of the algorithm. A comparison
is given between the relative performance of the simplicial descent
algorithm used and an interior point method on the piecewise linear
estimation problem.
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1 Introduction

This article has two objectives. The first is to provide a review of applications
of l1 regularisation along with some insights not found in the literature.
The second is to describe exploratory computations that provide interesting
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information about the performance of the l1 descent algorithm in the context
of variable selection compared with the homotopy algorithms.

The lasso algorithm for variable selection in linear models, introduced by
Tibshirani, works by imposing an l1 norm bound constraint on the variables
in a least squares model and then tuning the model estimation calculation
using this bound [13]. This introduction of the bound can be interpreted
as a form of regularisation step. It leads to a form of quadratic program
which can be solved by a straight-forward modification of a standard active
set algorithm for each value of this bound.

The selection problem that motivates Tibshirani’s introduction of the lasso
starts with a data vector y ∈ Rn, which could be observations on a signal
measured in the presence of noise, and a linear model Xβ where the design
matrix X : Rp → Rn is assumed to have rank min (n,p). It seeks an economical
representation of the data expressed by a close to minimal set of the non-zero
components of β and corresponding columns of X such that the norm of the
residual vector ‖r‖2,

r = y − Xβ , (1)

is small in an appropriate sense. The lasso seeks to systematise the search for
an economical representation by considering the constrained problem

min
β

1

2
‖r‖22 subject to ‖β‖1 6 κ . (2)

Here κ has the role of a regularisation parameter and it certainly can be used
also to control ill-conditioning. No columns of X are selected when κ equals
zero which implies that β equals the zero vector. Increasing κ adds columns
of X into the model, typically one at a time. When κ is large enough there is
no constraint on the components of β so all are selected when p 6 n . One
consequence is that the Lagrange multiplier µ for the l1 constraint is zero
for κ large enough.

The initial method for solving (2) transformed it into a standard quadratic
program for each value of κ tested. Subsequently, it was shown that the
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transformation step is unnecessary [9]. However, the big improvement came
from the realisation that the optimal solution trajectory was piecewise linear
in κ and that this observation could be made the basis of a remarkably
efficient algorithm—the whole spectrum of solutions β(κ) can be calculated
at a similar computational cost to the solution of the quadratic program for a
single value of κ. This “homotopy” algorithm is discussed in the next section.
It has been adapted to fit a range of applications. These include applications
in compressed sensing [5], problems with multiple objectives where the form of
constraint must be chosen appropriately [14], variable selection in generalised
linear models where the likelihood is approximated by quadratic splines [16],
and robust variable selection using the Huber-M estimator which involves a
mixed piecewise linear, quadratic objective [12]. Different selection problems
can be addressed by varying the form of constraint. Examples include those
by Bondell and Reich [3] and Zou and Hastie [18]. The original homotopy
algorithm for the lasso is summarised in the next section and applications
which show its remarkable efficiency summarised.

What is common in all these applications is that the objective is strictly
convex, have degree no more than two, and have continuous first derivatives.
This has led to attempts to weaken these requirements. Most are related to
the quantile regression objective

min
β

n∑
i=1

(1− τ)(−ri)+ + τ(ri)+ , 0 < τ < 1 , (3)

which is continuous, convex, and piecewise linear. Examples include the
training of (so-called) l1 norm support vector machines [17, 15] corresponding
to τ = 1 in (3), quantile regression [6, 7], and regularised simultaneous model
selection in multiple quantile regressions [19] where the form of constraint used
by Turlach, Venables and Wright [14] is used to develop a simultaneous variable
selection procedure for simultaneous quantile regressions. The compressed
sensing application suggested by Candes and Tao [4] involves the minimization
of the l1 norm of the parameters subject to a maximum norm constraint on
the components of the residual vector. This fits the pattern developed here
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because it follows from the necessary conditions that the roles of the constraint
and objective can be reversed. The extension of the lasso to this class of
problems is considered in Section 3. The presentation is specialised to the
“generic” quantile regression case τ = 0.5 corresponding to the l1 objective.
The l1 lasso replaces 1

2
‖r‖22 in (2) with ‖r‖1. The development of a homotopy

algorithm is possible. However, it has important structural differences when
compared with C1 objectives. These have important ramifications for the
computational efficiencey of the procedures. Numerical results are presented
which allow direct comparison with those derived for the C1 case.

The final section returns to the consideration of the direct solution of the
optimization problem for fixed κ. For the l1 lasso the necessary conditions
show that the constrained problem actually reduces to an augmented l1 mini-
mization problem for which considerable computational experience is available.
The comparisons made here are of the work involved in solving the basic
optimization problem for a range of fixed values of κ using an efficient simpli-
cial l1 solver, and of the relative performance of the descent algorithm and
of an interior point algorithm for the l1 problem. The direct solution proce-
dures are much more competitive for the l1 case than they are for the least
squares lasso. Also, although the simplicial methods appear more efficient for
problems with up to several hundreds of observations, there is evidence of a
computational penalty growing with n which suggests that the interior point
methods would become methods of choice once the number of observations
enter the thousands.

2 The least squares lasso

Results in this section are stated without proof. The necessary conditions for
a minimum of (2) are [9]

rTX = µuT , µ > 0 , uT ∈ ∂‖β‖1 , µ =
rTXβ

‖β‖1
, (4)
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where µ is the Lagrange multiplier for the l1 constraint. Note µ = 0 if
κ > ‖βLS‖1 where βLS is the solution of the unconstrained problem. Now
introduce an index set ψ pointing to the nonzero components of β (the
currently selected variables) and a permutation matrix Qψ which collects
together these nonzero components. Then

β = QT
ψ

[
βψ
0

]
, u = QT

ψ

[
θψ
u2

]
∈ ∂‖β‖1 , (5)

(θψ)j = sign(βψ(j)), −1 6 (u2)k 6 1 , k ∈ ψc, (6)

ψ ∪ψc = {1, 2, . . . ,p}, uTβ = ‖β‖1 , ‖u‖∞ = 1 . (7)

For convenience introduce the partial orthogonal factorisation of the design
matrix X,

XQT = S

[
U1 U12
0 B

]
, (8)

where U1 is upper triangular, but B need not be reduced, and the auxiliary
vector wψ = U−T

1 θψ . If the inequalities (6) are strict then differentiating the
reduced necessary conditions with respect to the constraint bound gives the
system

dµ

dκ
= −

1

wT
ψwψ

, (9)

U1
dβψ
dκ

=
1

wT
ψwψ

wψ , (10)

d(µu2)

dκ
= −

1

wT
ψwψ

UT12wψ . (11)

Here the right hand side of the ode system is independent of κ. It follows
that the solution trajectory is locally linear on sub intervals of κ where the
l1 norm is smooth. This means it is a simple computation to follow the
solution trajectory until smoothness breaks down! This corresponds either to
a component of βψ becoming zero (a variable deletion step) or a component
of u2 violating its bounds in (6) which corresponds to a variable selection
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Table 1: Step counts for the homotopy algorithm—least squares objective.
p n xa xd

Hald 4 13 4 0

Iowa wheat 8 33 8 0

diabetes 10 442 11 1

Boston housing 13 506 13 0

step [9]. The continuity of the trajectory is guaranteed by the standard
perturbation results which show how to restart at these breakpoints.

This observation is the basis for the homotopy algorithm of Osborne, Presnell,
and Turlach [9]. It proves to be remarkably efficient, computing the entire
solution trajectory in little more than the cost of solving the unconstrained
problem and returning significant additional information. It links to the
standard least squares solution algorithm based on orthogonal factorization
by using stepwise updating techniques in the partial factorisation (8). Results
for several classical Google accessible data sets are given in Table 1. Here xa
counts homotopy steps while xd counts variable deletions. Variable addition
is much the most common action, and this explains the observed efficiency.
Tibshirani noted that addition is the only action when columns of the design
matrix are orthogonal.

3 Non-smooth objectives

An important example of the kind to be considered is provided by the
quantile regression objective (3) parametrised by the quantile parameter τ
where the ri are residuals in the linear model fit. This objective is of interest
in econometrics and corresponds to one of the more popular applications
of the lasso variable selection technology. The special case of τ = 1/2

gives the l1 fitting problem. The limiting case τ = 1 of (3) gives, with
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very minor modifications to take account of the unconstrained variable, a
form of support vector machine ([17]). The idea is that given training data
(x1,y1) , . . . , (xn,yn) where xi ∈ Rp, yi ∈ {−1, 1}, find a rule so that given a
new x we assign it to a class from {−1, 1}; this is achieved by solving

min
β0,β

n∑
i=1

[
1− yi

(
β0 +

p∑
j=1

βjhj(xi)

)]
+

subject to |β1|+ · · ·+ |βp| 6 κ .

The fitted model is

f̂ (x) = β̂0 +

p∑
j=1

β̂jhj (x) ,

and the corresponding class assignment is given by sign f̂ (x).

There is one striking difference in the properties of the optimal homotopy
trajectory between the case when the objective is at least once continuously
differentiable and the non-smooth case when the objective is piecewise linear.
In the former case the Lagrange multiplier for the l1 constraint is a piecewise
linear, continuous function of the constraint bound κ with the characteristic
property that it decreases steadily from its initial positive value at κ = 0

to 0 for κ large enough. In contrast, the corresponding Lagrange multiplier
associated with a piecewise linear objective subject to an l1 bound constraint
is a decreasing step function of κ with jumps at non-smooth points of both the
objective and the constraint. It is necessary to include an explicit multiplier
update phase as these jumps have to be determined as part of the computation.
This phase uses λ as the homotopy parameter.

The l1 lasso is a particular case of the quantile regression lasso with the
quantile parameter set to 0.5; we solve

min
β
‖r‖1 subject to ‖β‖1 6 κ . (12)

The Lagrangian form with multiplier λ is also required,

L (β, λ) = ‖r‖1 + λ {‖β‖1 − κ} . (13)
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The Lagrangian is convex if λ > 0 . Necessary conditions give

0 ∈ ∂βL (β, λ) = ∂β‖r‖1 + λ∂β‖β‖1 .

This is also the condition for the minimum of the l1 minimization problem
(λ fixed) which is

min
β

{‖r‖1 + λ‖β‖1} . (14)

An index set ψ is again used to follow the selected components of β. However,
a second index set σ is needed to follow the residual zeros which here play a
significant role in the necessary conditions. Set

σ = {i : ri = 0} and ψ = {i : βi 6= 0} .

Define set complements by σ ∪ σc = {1, 2, . . . ,n} and ψ ∪ψc = {1, 2, . . . ,p},
and permutation matrices Pσ : R

n → Rn and Qψ : Rp → Rp by

Pσr =

[
r1
r2

]
,

{
(r1)i = rσc(i) 6= 0, i = 1, 2, . . . ,n− |σ|,
(r2)i = rσ(i) = 0, i = 1, 2, . . . , |σ|.

(15)

Qψβ =

[
β1
β2

]
,

{
(β1)i = βψ(i) 6= 0, i = 1, 2, . . . , |ψ|,
(β2)i = βψc(i) = 0, i = 1, 2, . . . ,p− |ψ|.

(16)

PσXQ
T
ψ =

[
X11 X12
X21 X22

]
,Pσy =

[
y1
y2

]
. (17)

The subdifferential components for ‖r‖1 and ‖β‖1 in the permuted system
are [

θTσ vTσ
]
∈ ∂r‖Pσr‖1 and

[
θTψ uTψ

]
∈ ∂β‖Qψβ‖1 .

These permit the necessary conditions to be written [10] as

[
θTσ vTσ

] [ X11 X12
X21 X22

]
= λ

[
θTψ uTψ

]
, λ > 0 , (18)

‖vσ‖∞ 6 1 , (19)
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‖uψ‖∞ 6 1 , (20)

‖r‖1 =
[
θTσ vTσ

]
Pσr = θTσr1 , (21)

‖β‖1 =
[
θTψ uTψ

]
Qψβ = θTψβ1 6 κ . (22)

A similar argument to that used in the least squares case is employed to
generate the equations for the homotopy calculations [10]. For the κ-step, the
necessary conditions take the form

θTψβ1 = κ , “l1 norm condition”,

X21β1 = y2 , “zero residual conditions”.

Differentiating with respect to κ gives the “κ phase” equations

θTψ
dβ1
dκ

= 1 , (23)

X21
dβ1
dκ

= 0 . (24)

This phase finishes when either a new component of r or a new component
of β vanishes. Either way it is necessary to repartition the design matrix
in (18). Differentiating (18) with respect to λ gives

dvTσ
dλ
X21 = θTψ , (25)

dvTσ
dλ
X22 =

d
(
λuTψ

)
dλ

. (26)

Integration of these differential equations terminates when subdifferential
components of either vσ or uψ violate the bounds (19) and (20) respectively.
This corresponds to either a residual zero becoming non-zero or a zero
component of β being flagged to become non-zero.

Numerical results for the same data sets used to produce Table 1 using
the least squares lasso are presented in Table 2. Clearly these results are
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Table 2: Step counts for homotopy algorithm—l1 objective
p n sasd saxa xdxa xdsd

Hald 4 13 17 3 0 0

Iowa wheat 8 33 18 11 1 4

diabetes 10 442 546 12 0 3

Boston housing 13 506 872 28 1 16

less satisfactory. The new feature is the relative importance of the residual
sign changes which here trigger update steps caused by these points of non-
differentiability, and this causes the extra work as r adapts to the sign
structure required by the necessary conditions. The new notation sa and sd
is used to indicate addition and deletion of entries in σ corresponding to the
vanishing of a new residual, or a residual becoming nonzero. Double entries
(for example sa followed by sd) reflect the κ followed by the λ phases at each
step of the computation.

4 Descent computations

The solution of the l1 lasso for a fixed value of κ is equivalent to an l1 mini-
mization problem with an augmented design matrix (14). The formulation
of this problem as a linear program has a long history [11]. Early imple-
mentations encountered similar problems to those reported above for the
homotopy algorithm. Typically moving to the next zero residual in an lp
formulation encounters the characteristic simplex single step problem illus-
trated in Figure 1. Barrodale and Roberts [1] discovered a route around this
problem; however, simplicial algorithms can be developed directly. From the
necessary conditions, a vertex corresponds to a particular set of p residual
zeroes, relaxing off one zero in a generic representation of such a set can
generate a descent direction, and this is used as a line search direction for
the original l1 objective. This is illustrated in Figure 1. Explicit use of fast
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Table 3: l1 descent calculations—diabetes data.
λ l1 iterations solution zeros variables selected
5000 12 9 1

2500 12 8 2

1000 18 7 3

500 31 4 6

250 25 5 5

100 35 4 6

50 27 3 7

25 34 2 8

5 44 2 8

0.0001 45 0 10

sorting related algorithms in this line search is described by Bloomfield and
Steiger [2]. A modified secant algorithm appears to have a superior perfor-
mance on systematically generated problems [8]. An alternative approach
based on an adaptation of linear programming interior point methods is
recommended for large problems [11].

The use of the l1 descent approach on the diabetes data set is summarised in
Table 3 for a range of values of λ. Random initialisation is used and the total
number of iterations is 283. The procedure uses a simplicial algorithm and
secant method based line-search. Independent starts for each value of λ mean
that p = 10 iterations, each O(np) operations, are needed to initialise the
computation for each λ. The selection information provided by this exercise
does not compare too badly with the results of the homotopy algorithm and
costs significantly less.

The second table in this section compares the performance of the l1 descent
method with an interior point method specialised to the class of problems con-
sidered here. This interior point candidate considered is the “Frisch–Newton”
implementation by Koenker and Portnoy for the R statistical programming
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Figure 1: Standard linear programming does not support a line search.
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Table 4: Simplicial descent versus interior point methods.
data set n p descent ls steps fn ip
Hald 13 4 8 19 8

Iowa wheat 33 8 13 34 9

diabetes 442 10 45 182 10

Boston housing 506 13 56 251 13

language [6, 11]. The specific R package used was quantreg and the specific
function rq.fit.sfn. To compare these figures it is necessary to note that
the simplicial l1 descent iterations cost O (np) operations per recorded iter-
ation, whereas the interior point methods are significantly more computer
intense with each recorded iteration costing at least O

(
np2

)
operations. It

appears that the simplicial descent method is distinctly competitive for the
data sets used here. However, the reported results suggest it could suffer a
growth term depending on n which is likely to reverse this conclusion for
significantly larger data sets. This is in agreement with the recommendations
accompanying the R software [6].
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