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Tangents, adjoints and computational
complexity in terrestrial carbon modelling
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Abstract

Differentiation enters modelling through initialisation, calibration,
sensitivity analysis and data assimilation. Automatic differentiation
provides tools for augmenting models to calculate the derivatives. Ad-
joint transformations lead to computational gains in such analyses.
The calculation of tangent models by operator overloading provides a
reference case against which to assess such gains. This article uses a
vector space representation to analyse how special localisation charac-
teristics of the land surface within the earth system might change the
computational complexity of calculating derivatives.
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1 Introduction

Carbon cycle studies are vital for understanding future global change. Most
information is indirect, requiring analysis of inverse problems such as deducing
co2 fluxes from concentrations [2]. Variational techniques using adjoints have
led to a convergence of ‘batch’ versus ‘mass-balance’ approaches [8], developing
‘process inversions’ that estimate parameters in carbon models.

This article considers models defined in terms of differential equations

ẋk = gk(x1, . . . , xK, t) for k = 1, 2, . . . ,K . (1)

While the main model task is integrating such equations, differentiation is
important in modelling for sensitivity analysis, calibration, intialisation and
data assimilation. Such capabilities turn a numerical ‘model’ into a ‘model
analysis system’ [7]. Algorithmic differentiation (ad) transforms computer
code, using the chain rule to calculate derivatives [5].

As described in Section 2, the calculation of derivatives is simplified if the
compiler/language supports operator overloading. Computational complex-
ity is based on matrix descriptions of tangent/adjoint relations to identify
efficient uses of ad. Section 3 reviews ‘standard’ applications of adjoint
transformations in vector spaces. Section 4 applies these to the use of ad in
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terrestrial carbon modelling. The concluding section notes their importance
for assessing global change over the 21st century.

2 Tangent/gradient relations and compilers

The starting point is to differentiate equations (1) with respect to a parame-
ter a, as

∂

∂a
ẋk =

∑
k ′

∂

∂xk ′
gk(x1, . . . , xK, t)

∂

∂a
xk ′ +

∂gk

∂a
for k = 1, 2, . . . ,K . (2)

Using the notation vk to denote the derivatives ∂
∂a
xk, equation (2) is

v̇k −
∑
k ′

vk ′hk ′,k(x1, . . . , xK, t) = bk(x1, . . . , xK, t) . (3)

Given xk(t), equations (3) are linear in the derivatives vk and are written

as L~v(·) = ~b(·). This is termed a ‘tangent linear model’ (tlm). It requires
sufficient regularity to allow exchanging derivatives with respect to time
and parameters. Derivatives with respect to a set of parameters, ~a, with
elements ap, for p = 1, 2, . . . ,P , give a family, vkp(·), of solutions. While the
‘forcing’ bkp depends on p, the tlm ‘model’, defined by the hk,k ′(·), is the
same for all p. For simplicity of notation, we consider only linear dependence
on ~a, represented as a parametric dependence in K basis functions rather
than use K× P functions:

~b(·)[~a] =
∑
p

apbp(·), ~v(·)[~a] =
∑
p

apvp(·)

giving the generalisation of (3) as

L~v(·)[~a] = ~b(·)[~a]. (4)
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Computational complexity is studied for K equations, P parameters and
N time steps. The dependence on [~a] implies a factor of P (or P + 1 if
calculating both ~x(·) and ~v(·)[~a]).

For integration of (1) the operation count grows as ANK where A is the
average operation count of evaluating the gk(·) relative to a simple linear
product. It does not affect the analysis if A is a function A(K).

Operator overloading [5, 10] takes a statement operating on real values, for
example S = Q * R in Fortran denoting s ← q × r , and re-interprets it by
redefining the types of S, Q and R as composite variables. The compiler then
interprets S = Q * R as also specifying calculation of

∂s

∂ap
← q× ∂r

∂ap
+
∂q

∂ap
× r for p = 1, 2, . . . ,P .

More generally, algorithmic differentiation for a binary operator s← f(q, r),
leads to

∂s

∂a
← ∂f

∂q

∂q

∂a
+
∂f

∂r

∂r

∂a
for s← f(q, r) (5)

with unary operations and functions as special cases. Our Fortran-90 sys-
tem analysed simple climate models to determine the incremental utility
of geosequestration as a ‘climate benefit’ over time [3]. In principle, mod-
ifying models to support ad in this way only requires changes in input,
output and type declaration statements. This makes calculation of the tlm
by operator overloading an appropriate reference case, with computational
complexity ≈ 2ANKP .

Much of the complexity analysis of linear sensitivity follows from simple
properties of matrix/vector multiplication. For dimension L × L, a matrix
by vector product requires L2 multiplications. Direct multiplication of two
(square) matrices requires L3 multiplications. Leaving aside recursive ap-
proaches (with Llog2 7 complexity for matrix multiplication), in general a

matrix F (of dimension L×L), factorised as F =
∏J

j=1 Fj and multiplied by a

vector, working left to right, vF takes (J+1)L2 multiplications while Fv takes
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JL3 + L2 multiplications. Right-to-left evaluation interchanges the operation
counts. These operation counts are greatly reduced if the factorisation leads
to sparse matrices, Fj.

Tangent/adjoint compilers apply the algorithmic approach of equation (5) to
the sensitivities defined by the tlm (2). They analyse the extent to which
the model solutions depend on initial conditions, ~x(0), parameters, ~a, and
model forcing. For generic inputs ~y and generic outputs ~u and related by an
operator, F, generally non-linear, as

~u = F(~y),

sensitivities are expressed as a Jacobian matrix, J, with elements

Jrs =
∂ur

∂ys
.

Usually, it is neither practical nor interesting to analyse all the sensitivities Jrs.
A summation BJC, grouping (or selecting) the outputs, zr, using a matrix C
(a vector if only one output is of interest) and grouping (or selecting) the
inputs using a matrix B, gives

BJC = B

[∏
j

J[j]

]
C (6)

with j denoting a time ordering (J[1]J[2]J[3] · · · ) through the calculation.
Notionally the dimension of the J[j] is the number of internal variables in
the computer code. From (5), ad corresponds to factorising J so that all J[j]
have only three elements differing from the identity matrix.

Efficient evaluation of (6) has two special cases each with complexity 2ANK.
If B reduces to a vector (sensitivities to one input), evaluate left to right
(2PANK, for P > 1). If C reduces to a vector (sensitivities involving one
output), evaluate right to left (2QANK for Q > 1). In this second case, the
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‘integration’ runs backwards in time, requiring that the ~x(·) are stored from a
forward run, rather than calculated in parallel as in tangent calculations.

Tangent/adjoint compilers transform model code into code for tangents
or gradients (derivatives of an output with respect to all inputs) [5, 4].
The following sections use a vector space representation of tangent/gradient
relations to clarify cases where special properties might change the relative
advantages of tangent versus gradient analysis.

3 Adjoints

Since adjoints are relations for operators on vector spaces, and defined in
terms of inner products, these aspects need to be identified. The vector space
can be a space of functions (of model solutions or sensitivities), or a discrete
data space or a combination of the two. Operators such as L produce new
vectors Au that are elements of the vector space (with linearity conditions).
An inner product, denoted 〈· | ·〉, arises when sensitivities are combined
or selected using linear relations such as (6). Adjoints are then defined by
〈v | Au〉 = 〈A†v | u〉 for all vectors u, v.

Tarantola [11] considered having two vector spaces: a model space (in our
terms, a model parameter space) and a data space, with operators mapping
between the spaces, inner products denoted 〈· | ·〉M and 〈· | ·〉P, and the
adjoints defined by 〈v | Au〉M = 〈A†v | u〉P . This reduces to the definition
above by using the sum of the model and data spaces and defining adjoints in
this larger space. Similarly, tlm solutions ~v(·) and the forcing ~b(·) may reside
in different function spaces, but for simplicity we take these as subspaces of a
single larger function space.

For solutions of differential equations to form a vector space usually requires
homogeneous boundary conditions. However, various transformations can
address this problem, for example by considering the set of solutions as
a particular solution plus a vector space of solutions of the homogeneous
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problem. Fortunately, as noted by Craven [1], in many cases it is not necessary
to actually do such a transformation—‘it is sufficient to show that it can
be done’. Derivatives with respect to parameters will form a vector space
if the boundary conditions are independent of the parameters. Cases with
parameter dependent boundary conditions can be taken as having parameter
independent boundary conditions and a parameter dependent multiple of
δ-function forcing at t = 0+.

As noted above, many applications of ad involve ‘adjoint modelling’, that
is, the right to left evaluation of (6). When numerical modellers refer to ‘the
adjoint’ they are usually mean L†, the adjoint of the tlm, L, (even though
L is equally well ‘the adjoint of L†’). Here L acts on a set of sensitivities
while L† acts on a set of integrated weight functions, ~r(·).

Adjoint modelling is of most use when we are interested in some projection of
the model solution ~x(·). This is written as an inner product using weighting
functions, w(·), as

Θ = 〈~w(·) | ~x(·)[~a]〉. (7)

To consider derivatives, we linearise ~x(·) about a reference solution ~x∗ as
~x(·) = ~x∗(·)+~v(·)[~a]. The solution, ~v(·)[~a], of the linear model (4) is formally
represented using a Green’s function

~v(·)[~a] = G~b(·)[~a]. (8)

The adjoint transformation in modelling separates the operations of differenti-
ation from integration when differentiating expressions such as (7). Formally,
with ~r(·) = G† ~w(·),

∇~a〈~w(·) | ~v(·)[~a]〉 = ∇~a〈~w(·) | G~b(·)[~a]〉
= ∇~a〈G† ~w(·) | ~b(·)[~a]〉
= ∇~a〈~r(·) | ~b(·)[~a]〉. (9)
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In matrix terms, the adjoint transformation can be regarded as re-writing the
sum

∑
n ′,k ′

wn ′,k ′

[∑
n,k

Gn ′k ′,nkbnkp

]
=
∑
n,k

∑
n ′,k ′

wn ′k ′Gn ′k ′,nk

bnkp
changing (NK)2 + (NK)2P multiplications into (NK)2 +NKP multiplications.
Since the matrix of Gn ′k ′,nk is usually unavailable, and N2 dependence makes
either form highly inefficient, most analyses of adjoints use differential opera-
tors L and L†, rather than integral operators G and G†,

∇~a〈~w(·) | ~v(·)[~a]〉 = ∇~a〈L†~r(·) | ~v(·)[~a]〉
= ∇~a〈~r(·) | L~v(·)[~a]〉
= ∇~a〈~r(·) | ~b(·)[~a]〉 (10)

with ~w(·) = L†~r(·) giving equations for the adjoint model.

If we consider G in a block matrix form, partitioned by n, then we have
Gn ′k ′,nk = 0 for n ′ < n and so the transpose GT has GT

n ′k ′,nk = 0 for
n < n ′ —the dependence evolves backwards in time. Thus, consistent with
the evaluation of the factors of J in time reversed order, backwards evaluation
is necessary for any differential relation derived from G† (but of course this
does not prove that such a form exists).

The notional complexity of using the tlm is KN + A ′NKP. The KN is
for evaluating the inner product and A ′NKP is for integrating the tlm for
P parameters. In contrast, the complexity of the adjoint approach is A†NK+
NKP. The A†NK is for evaluating the adjoint function and NKP is for
evaluating the inner products. In terms of binary operations, we expect
A† ≈ A ′ ≈ 2A .

This analysis assumes the complexity of calculating ~b[~a] is less than A ′NKP.
This is true if only a small fraction of A operations in the original models
involve parameters and if most parameters are associated with small sets of
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prognostic variables. Each of the AKN binary operations involves at most two
parameters and more usually only one or zero. In some cases, the reduction
of NKP components in ~b[~a] down to NK (or less) is explicit when each p
applies to only one value of k as in surface fluxes for co2 inversions. Thus
calculation of ~b[~a] generally has a complexity 6 AKNP.

The analysis above complements the description from sparse matrix factori-
sation. The adjoint is more efficient because the factor A† (characterising
adjoint equations) is separated from the term that includes P (the number of
parameters). In operational terms, this separates integration from differentia-
tion. Using the vector space formalism raises the possibility of identifying
special cases where further reductions in computational complexity might be
possible.

Before looking at the special case of terrestrial carbon modelling, we review
various well known generic applications of adjoint modelling using a common
framework to analyse (i) sensitivity analysis, (ii) fitting soft constraints,
and (iii) optimisation in the presence of hard constraints. For computational
complexity, parametric dependence on ~a implies a factor of P in the complexity
measure.

Differentiation (as in sensitivity analysis) This uses (9) and (10) to

give ∇~a〈~w(·) | ~x(·)[~a]〉 = ∇~a〈~r(·) | ~b(·)[~a]〉 with ~r(·) = G†~w(·) or ~w(·) =
L†~r(·) where L is the evolution operator for the tlm and G is its Green’s
function. For large P using the adjoint becomes more efficient than multiple
integrations of tangent linear models.

Gradients for soft constraints When a cost function, Θ, has the form
of a squared ‘data-mismatch’ function, defined by a projection ~H from the
function space ~x(·) onto a discrete data set ~z, iterative minimisation of Θ with
respect to parameters ~a can be facilitated by using derivatives ∇~aΘ. Putting

~x(·)[a] ≈ ~x(·)[~a0] + ~v(·)[~a ′], (11)
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where x(·)[~a0] is current estimate, gives

∇~a〈~H~x(·)[~a] − ~z | ~H~x(·)[~a] − ~z〉 = 2∇~a〈~H~x(·)[~a0] − ~z | ~H~v(·)[~a ′]〉
= 2∇~a〈~H†(~H~x(·)[~a0] − ~z) | ~v(·)[~a ′]〉
= 2∇~a〈L†~r(·) | ~v(·)[~a ′]〉
= 2∇~a〈~r(·) | L~v(·)[~a ′]〉
= 2∇~a〈~r(·) | ~b(·)[~a]〉, (12)

where
L†~r(·) = ~H†(~H~x(·)[~a0] − ~z). (13)

The representation (12) uses a composite space—the top line is in the data
subspace—the remaining lines are in the function subspace(s). At each step
of the iterative minimisation, the derivatives of Θ are defined by the inner
product of ~b(·) and the functions ~r(·) obtained by integrating (13). For large
numbers of parameters, iterative solutions based on this transformation can be
computationally efficient even when ~x(·) depends linearly on ~a. Applications
in terrestrial carbon modelling include calibration and data assimilation.

Gradients, with hard constraints The problem is to minimise a func-
tional Θ[~u(·)], subject to ~u(·) exactly satisfying equations

L~u(·) = 0 (14)

as a ‘hard’ constraint. Such problems are solved by introducing a function ~r(·)
as a Lagrange multiplier and minimising

Θ∗ = Θ[~u(·)] − 〈~r(·) | L~u(·)〉. (15)

The solutions for the constrained minimisation are obtained from

∇~uΘ
∗ = ∇~uΘ−∇~u〈L†~r(·) | ~u(·)〉 = 0 , (16)
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giving adjoint equations to define the Lagrange multiplier

L†~r(·) = ∇~uΘ . (17)

Solution of (14) and (17) defines the minimum. In carbon cycle studies,
problems of deducing sources and sinks can be formulated this way including
mass-balance inversions of space-time distributions of co2 and estimating
global sources from co2 in bubbles trapped in ice.

4 Terrestrial carbon modelling

Inverse modelling of the carbon cycle progressed from flux estimation, through
to process calibration and explorations of data assimilation [12]. The impor-
tance of differentiation in such calculations motivated the present analysis
of computational complexity, taking account of the localised nature of the
terrestrial system. Terrestrial carbon models usually have a number (KG) of
independent instances of a single model (or a small number of biome specific
models), with spatially explicit forcing distinguishing the instances, each with
KR prognostic variables.

The principle underlying ‘process inversion’ [7] is that a small number of
parameters constrain a large set of fluxes. The utility of this approach relies
heavily on this assumption. This restriction does not preclude effects such as
parameters having a spatial modulation due to adaptation to mean climate,
so long as this can be parameterised.

The impact of the terrestrial system on the physical climate involves complex
non-linear relations. Some components of an earth system model may be
easier than others for implementing adjoints. The following discussion explores
whether, for the terrestrial system, having A of the form AR × KG simplifies
the various types of application considered above.

Initialisation Initialisation finds a quasi-steady state to start an integration
in time—in terrestrial carbon modelling this is usually a seasonally
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periodic state, forced by representative meteorological fields, requiring
state variables that give zero year-to-year change. Initial tests show that
ad accelerates the equilibration of models of nutrient limited carbon
pools.

Parameter sensitivity As noted above, terrestrial carbon modelling aims
to capture disparate fluxes using small a number of parameters that
determine the response to disparate meteorological forcing. To capture
how sensitive fluxes are to errors and uncertainties in these parameters,
direct application of the tlm is appropriate. Characterising sensitivity to
errors in meteorological forcing is an important but ill-defined problem.

Bottom-up calibration ‘Bottom-up’ refers to calculations that assemble
a large scale description from detailed local information. In developed
nations such information is assembled for various land management
purposes. However, the use of remotely sensed data from satellites is the
only way of achieving global coverage. Usually this requires calibration
against reference sites, applying the formalism of (12) to a cost function

ΘBU:cal =
∑

k⊂[1,KG]

Θk . (18)

If only a small number of parameters (per biome) is involved, the
complexity AKGKRNP makes the use of the tlm effective. Otherwise a
local adjoint model must be run KG times, with KG data mis-matches
as ‘forcing’.

Top-down calibration ‘Top-down’ refers to constraints linking multiple
locations, for example, the constraints from space-time distributions
of co2. The atmospheric co2 distribution ~xA is related to surface fluxes
by atmospheric transport T~xA = ~Φ and ~Φ related to terrestrial carbon
variables ~xT. Since these inversions are ill-conditioned, a regularisation
constraint is needed. Spatial smoothing can be obtained from correlation
constraints [8] or geostatistical considerations. Alternatively, top-down
estimates can be constrained by local ‘bottom-up’ information with ΘBU

from (18) as a Bayesian prior for top-down inversion.
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If top-down and bottom-up data are combined by minimising a cost
function, Θ = ΘTD + ΘBU , there is no necessity to use the same
transformation for both ∇~aΘBU and ∇~aΘTD. Thus while ∇~aΘBU can
be conveniently calculated using a tangent form, ∇~aΘTD would be
most conveniently calculated from the adjoint of the transport model
if available. Generally, the k-dependence of ∂

∂ap
Φk will not match pre-

computed regions and in iterative solutions of non-linear problems the
k-dependence will change between iterations.

Data assimilation Various forms of data assimilation incorporate obser-
vations into an evolving model state, by minimising a composite cost
function. In land surface models such tasks could include detection
and quantification of carbon climate feedbacks in the medium to long
term. Estimates range from 20 to 200 ppm of extra co2 expected in the
atmosphere this century from such feedbacks. Operational carbon data
assimilation can be important in Natural Resource Management [9].
Data assimilation also provides recursive parameter estimation as an
alternative to a ‘batch’ approach of simultaneously fitting all parameters.

5 Concluding remarks

This study was motivated by development of the Australian Community Cli-
mate and Earth System Simulator (access) whose land surface component
is based on earlier csiro models. This is augmented by carbon pools based
on the casa model [6] which was used in tests of the Fortran-90 ad proce-
dures. Tests with this model confirm that the simplicity of ad by operator
overloading applies in practice, even with an existing model not designed for
such transformations.

In the earth system, the land surface components, water and carbon, share
important characteristics: (i) high spatial and temporal heterogeneity; (ii) mul-
tiple time scales; (iii) disparate calibration data; and (iv) primarily local
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interactions. While many of the characteristics of land surface models make
calibration challenging, characteristic (iv) simplifies the calibration calcula-
tions, as indicated by the results from the preceding sections. To show this,
we review the results from the preceding sections, for sensitivity of Q outputs
to P parameters in the case of N time steps, for K variables, and A operations
per time step.

From the sparse matrix analysis of ad it follows that: (i) an integration of
complexity AKN can have P derivatives calculated with complexity cAKNP
using ad implemented by operator overloading (tests give c of about two
to three); and (ii) derivatives of Q outputs can be evaluated with complex-
ity c ′AKNQ with‘gradient’ code. This is desirable if P is large and P � Q .
Calibration calculations, having Q = 1 , are the most important case.

In terrestrial modelling with K = KG × KR (KG grid cells with KR reservoirs,
or other variables, per cell) the vector space form helps clarify special cases.
What is less obvious from the sparse matrix form and what we learn from
the vector space form for the case K = KG × KR + KT is (iii) the balance
shifts in favour of using a tangent model for calibrations where the cost
function is a sum of KG local cost functions; (iv) K = KG × KR + KT with
KT variables describing atmospheric transport of carbon. Calibrations that
combine top-down and bottom up criteria are not restricted to making a
global choice between ‘tangent’ and ‘gradient’ approaches for all aspects of
differentiation.

In conclusion, the vector space representation is useful for analysing the
computational complexity of a range of modelling calculations in terrestrial
carbon studies.
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