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Inverse Sturm–Liouville problems: some recent
developments

Alan L. Andrew1

(Received 21 January 2011; revised 14 June 2011)

Abstract

We consider numerical methods for obtaining, from spectral data,
information on the potentials of Sturm–Liouville operators. In partic-
ular, we describe some recent work on methods using an asymptotic
correction technique of Paine, de Hoog and Anderssen. Topics covered
include a discussion of difficulties arising from the scarcity of accurate
data in physical applications, a preview of some work in progress on
the Hochstadt–Lieberman problem, and suggestions for future work.
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1 Introduction

Inverse eigenvalue problems arise when we seek information about a vibrating
system from observations of its normal modes of vibration. Most work on the
numerical solution of these inverse problems concerns the finite dimensional
case, when, for some n ∈ N , we have to solve n simultaneous nonlinear
equations in n unknowns [10]. This is more difficult than the corresponding
‘direct’ problem (finding all eigenvalues of a given matrix) which is equivalent
to solving a single nonlinear equation—the characteristic equation. Inverse
eigenvalue problems for differential equations are more difficult still, as these
are infinite dimensional problems. In theory, infinitely many data points are
required for their solution, and the question of which infinite sets of data will
determine the solution uniquely is highly nontrivial. The theoretical literature
is largely concerned with finding which infinite sets of data will suffice. This
still does not address the greatest difficulty in obtaining solutions to real world
problems: the severe limitations on the amount of data available. Since only
a finite set of data is available in applications, standard numerical methods,
including all those considered here, effectively model the problem as some
finite dimensional problem [2, 21]. Neher [23] gave a method for computing
rigorous two sided bounds for the solution of one such model problem, but,
with only a finite set of data, we cannot tell how close the solutions of the
model problem are to those of the original inverse Sturm–Liouville problem.
Different numerical methods correspond to different models, and hence yield
different information about the original problem. Since it is generally lack of
data rather than limited availability of computing resources that constrains
the reliability of any conclusions drawn from the available data, the best
strategy is often to make several independent calculations using different
methods. For this reason, it is better to have a large number of available
numerical methods rather than seeking to find a single ‘optimal’ method.
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We consider how we may use a subset of the eigenvalues λ of the Sturm–
Liouville problem

− y ′′ + qy = λy , (1)

sin(c1)y(0) + cos(c1)y
′(0) = sin(c2)y(π) + cos(c2)y

′(π) = 0 , (2)

to estimate the potential q : [0,π] → R in (1). Even knowledge of all
the (infinitely many) eigenvalues of (1) and (2) is generally insufficient to
determine q uniquely. For example, if sin(c1 + c2) = 0 then the eigenvalues
are the same for q as for q̂, where q̂(x) = q(π − x). For uniqueness, we
generally need an additional infinite set of data. Famous sets of sufficient
conditions to ensure the uniqueness of q ∈ L1(0,π), include those of (i) the
‘symmetric’ problem [2], in which we are given the eigenvalues of (1) and (2),
together with the symmetry requirement that q = q̂ , and (ii) the closely
related [4] ‘two spectra’ problem in which we are given the eigenvalues of
(1) and (2), together with the eigenvalues of (1) with boundary conditions
which coincide with (2) at one boundary but not at the other. Most other
famous sets of sufficient conditions [2, 5, 9, 14, 15, 16, 27, 31] include some
information about the eigenfunctions of (1) and (2). Section 3 considers an
important exception—the ‘Hochstadt–Lieberman’ problem, where q is known
on some subinterval of (0,π). We announce some new results whose proofs
will appear elsewhere [5].

2 Asymptotic correction

Several very different methods are available for the numerical solution of
inverse Sturm–Liouville problems [2, 9, 14, 15, 18, 23, 25, 29, 30, 31, 32].
For example, some involve transformation of the problem to one involving
integral equations [15, 31], and some require solution of the direct problem
for a sequence of approximations to q [30, 32]. This article is primarily
concerned with methods using a simple technique [6, 26] which I call ‘asymp-
totic correction’ (sometimes called ‘algebraic correction’ [11] or ‘the aadhp
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correction’ [28]). This enables finite difference and finite element methods,
which are well developed for direct problems, to be used successfully for
inverse eigenvalue problems for ordinary and partial differential equations.
One reason why this method is important is that it is potentially applicable
to many other differential equations [3].

As discussed elsewhere [2, 3, 4, 5, 22, 24], if we simply use the eigenvalues of the
differential equation as input data in the inverse problem for the corresponding
finite difference or finite element matrix, then many methods for solving the
matrix inverse eigenvalue problem will not work at all, and none will give
satisfactory results. This is because the discrete (finite difference or finite
element) eigenvalues do not have the same asymptotics as the eigenvalues
of the differential equation [2, 3]. The idea of asymptotic correction is that,
before equating the discrete eigenvalues to the eigenvalues of the differential
equation, we first add a correction which, in the case of constant potential,
makes the discrete eigenvalues exact. For example, consider the corrections to
be added to the classical second order centred finite difference approximation
of the ith eigenvalue of the Sturm–Liouville problem (1), obtained with
uniform mesh length h. With the notation [1, 2, 3]

εr(i,h) = i
2 −

12 sin2(ih/2)

h2[3+ (1− r) sin2(ih/2)]
, (3)

the corrections are ε1(i,h), ε1(i −
1
2
,h), ε1(i −

1
2
,h) and ε1(i − 1,h), when

the boundary conditions are, respectively,

y(0) = y(π) = 0 , (4)

y(0) = y ′(π) = 0 , (5)

y ′(0) = y(π) = 0 , (6)

y ′(0) = y ′(π) = 0 . (7)

For the Numerov approximations, the corrections are ε2(i,h), ε2(i −
1
2
,h),

ε2(i−
1
2
,h) and ε2(i−1,h), respectively, and for the ‘linear hat’ finite element
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approximations, they are ε3(i,h), ε3(i −
1
2
,h), ε3(i −

1
2
,h) and ε3(i − 1,h),

respectively.

Our focus here is on work which postdates my earlier review [3] of work up to
about 2004. At that time, most work on the use of asymptotic correction to
solve Sturm–Liouville problems had concerned only the symmetric problem [2],
though two articles [2, 12] also considered one of the problems which use
some eigenfunction data (‘terminal velocities’).

Since then, asymptotic correction has also been used for the two spectra
problem. Good results were obtained with a second order method [4], and
even better results with either Numerov’s method [4] or boundary value
methods [7, 20]. The work described in the previous sentence considered the
case where the two sets of boundary conditions are (4) and (5), although
inverse problems with quite general boundary conditions can be handled
by appropriate modifications [2] of techniques [1] developed for the direct
problem. For some boundary conditions, the two spectra problem can be
reduced to the symmetric problem [4], but techniques developed specifically
for the two spectra problem give better results [4]. A notable limitation of
the methods is that, if n eigenvalues of (1) and (4) are used, then the number
of eigenvalues of (1) and (5) used has to be either n or n+ 1. Other recent
developments include the use of asymptotic correction in methods which
allow indefinite mesh refinement [14], and the use of inverse Sturm–Liouville
problems in the numerical solution of certain inverse problems for partial
differential equations [8].

3 The Hochstadt–Lieberman problem

Hochstadt and Lieberman [17] showed that each q ∈ L1(0,π) is uniquely
determined by its value on (π/2,π) together with the eigenvalues of (1) and (2).
This result has subsequently been generalized in many ways [5]. Gesztesy
and Simon [13] considered problems where q is known on (c,π) for some
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c ∈ (0,π). They showed that, if 0 < c < π/2 , then q is uniquely determined
in (0, c) by a certain fraction of the eigenvalues of (1) and (2), though the
number of eigenvalues required is still infinite. If c > π/2 , then additional
data is required to ensure uniqueness on (0, c). We call the case c = π/2 the
classical Hochstadt–Lieberman problem, and the case of arbitrary c ∈ (0,π)
the generalized Hochstadt–Lieberman problem. Since only finitely many
eigenvalues will be known in practice, we might expect better accuracy in the
case c < π/2 when not all eigenvalues are required. Our results (described
below) show that achieving this better accuracy is not trivial.

Kammanee and Böckmann [19] used asymptotic correction to solve the
classical Hochstadt–Lieberman problem with boundary conditions (4), using
a uniform grid and taking as data the n lowest eigenvalues and the values
of q at n grid points, so that the known value q(π/2) is not used. Even for
the classical problem, we could obtain a slightly finer uniform grid with the
same n eigenvalues by using π/2 as one of n+ 1 grid points where the known
value of q is used. Moreover, in applications [5], the proportion of the interval
on which q is known is usually not exactly half.

Here we consider four cases of the generalized problem. In these cases, which
we call ‘Problems 1(4), 1(5), 1(6) and 1(7)’, the boundary conditions are (4),
(5), (6) and (7) respectively. For r = 0, 1, 2, 3, the data for Problem 1(r+ 4)
consists of the values of q at the last m grid points, together with the first
n eigenvalues of (1) for the appropriate boundary conditions. From this
data we seek the values of q at the remaining n grid points, again using a
uniform grid. The same analysis [5] applies to the mirror image problem,
where the given values of q are those at the first m grid points. The problem
studied by Kammanee and Böckmann [19] is the special case m = n of
Problem 1(4), though their method of solution is slightly different [5]. Before
describing our results, we require some notation. Just as in the definition of
Problem 1(r+ 4), the values 0, 1, 2 and 3 of the parameter r in the definitions
of Ar, hr, Br and Qr(q;q) below represent the values appropriate for boundary
conditions (4), (5), (6) and (7), respectively. Our methods iteratively refine a
vector, q, whose components, q1, . . . ,qn, approximate the values of q at the
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first n grid points.

Notation Let λ
(r)
1 < λ

(r)
2 < λ

(r)
3 < · · · be the eigenvalues of (1) where, in

the cases where the parameter r has the values 0, 1, 2 and 3, the boundary
conditions are (4), (5), (6) and (7) respectively. Let A0 = (aij) be the
symmetric tri-diagonal (n+m)× (n+m) Toeplitz matrix with aii = 2 and
ai,i+1 = −1 . Let A1 and A2 be the matrices obtained from A0 by doubling
an+m,n+m−1 and a1,2 respectively. Let A3 = A1+A2−A0 , the matrix obtained
from A0 by doubling both an+m,n+m−1 and a1,2. Let h0 = π/(n +m + 1),
h1 = h2 = π/(n + m) and h3 = π/(n + m − 1). For r = 0, 1, 2, 3, let

Λ
(r)
i (q;q) and Λ

(r+4)
i (q;q) be the ith eigenvalues of h−2

r Ar + Qr(q;q) and
h−2
r B

−1
r Ar +Qr(q;q) respectively, where Br = I−Ar/12 and Qr(q;q) is the

(n +m) × (n +m) diagonal matrix whose ith diagonal element is qi (the
ith element of q) when i 6 n , while for i > n the ith diagonal element
of Qr(q;q) is q((i+ sr − 1)hr), where s0 = s1 = 1 and s2 = s3 = 0 .

We consider two methods for solving Problem 1(r+4). The first is the classical
second order method analogous to one previously used for the symmetric
problem [12]. It computes the solution q of Problem 1(r+4), for r = 0, 1, 2, 3,
as the solution of

fr(q) = 0 , (8)

where the ith components of the n-vectors f0(q), f1(q), f2(q) and f3(q) are

Λ
(0)
i (q;q)+ε1(i,h0)−λ

(0)
i , Λ

(1)
i (q;q)+ε1(i−

1
2
,h1)−λ

(1)
i , Λ

(2)
i (q;q)+ε1(i−

1
2
,h2)−λ

(2)
i and Λ

(3)
i (q;q)+ε1(i−1,h3)−λ

(3)
i , respectively. Thus the method

seeks a vector q whose elements are those values of q at the first n grid points
which make the first n corrected finite difference eigenvalues equal to the
(given) Sturm–Liouville eigenvalues.

Our second method uses Numerov’s method, with the approximation of the
boundary conditions motivated by ideas of Andrew [2, 4]. It computes the
solutions q of Problems 1(4), 1(5), 1(6) and 1(7) as the solutions of (8) for
r = 4, 5, 6 and 7 respectively, where the ith components of the n-vectors f4(q),
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f5(q), f6(q) and f7(q) are Λ
(4)
i (q;q)+ε2(i,h0)−λ

(0)
i , Λ

(5)
i (q;q)+ε2(i−

1
2
,h1)−

λ
(1)
i , Λ

(6)
i (q;q) + ε2(i −

1
2
,h2) − λ

(2)
i and Λ

(7)
i (q;q) + ε2(i − 1,h3) − λ

(3)
i ,

respectively.

We solve equation (8) using the iteration

Λ ′r(0)(qk+1 − qk) = −fr(qk), (9)

where the (i, j)th element of the Jacobian, Λ ′r(0), is Λ
(r)
i,j (0, 0), the value

at (0, 0) of the partial derivative of Λ
(r)
i with respect to its jth argument. For

this iteration to be well defined, we require Λ ′r(0) to be nonsingular. The
spectral condition number, κr(n,m), of Λ ′r(0) also plays a critical role in the
analysis of the method. The following theorem is an immediate consequence
of a stronger, but more complicated, result of Andrew [5].

Theorem 1 Let n > 1 . For r = 0, 1, 2, 3, Λ ′r+4(0) = Λ
′
r(0). The (i, j)th el-

ements of Λ ′0(0) and Λ ′1(0) are 2 sin2(ijh0)/(n + m + 1) and 2 sin2((i −
1
2
)jh1)/(n+m) respectively, while Λ ′2(0) =M1D and Λ ′3(0) = DM2D , where

the (i, j)th elements of M1 and M2 are 2 cos2((i− 1
2
)(j− 1)h2)/(n+m) and

2 cos2((i− 1)(j− 1)h3)/(n+m− 1) respectively and D = diag{ 1
2
, 1, . . . , 1}.

If m < n − 1 , then, for r = 0, . . . , 7, Λ ′r(0) is singular, with rank less
than (n+m+ 2)/2 .

If n − 1 6 m 6 n + 1 , then, for r = 0, . . . , 7, Λ ′r(0) is nonsingular and its
spectral condition number κr(n,m) satisfies κ0(n,m) = O(n1/2) if m = n or
n− 1 , κ1(n,n+ 1) = O(n3/2), while κr(n,m) = O(n) in all other cases with
r = 0, 1, 2 or 3 and m = n− 1, n or n+ 1.

Also, for all n,m ∈ N such that Λ ′(0) is nonsingular (even if m > n + 1),
and for all q∗ ∈ R and all p > 1 , there exist constants cp(n,m) and c(n,m)
such that, if (i) ‖q − q∗‖p < cp(n,m), and (ii) for i = 1, . . . ,n, |qi0 −
q((i + sr − 1)hr)| < c(n,m), where qi0 is the ith component of the initial
approximation q0, then, for r = 0, 1, 2, 3, the iteration (9) converges to a
solution of (8), and this solution is locally unique. This conclusion is also
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true for r = 4, 5, 6, 7, provided the eigenvalues of h−2B−1
r−4Ar−4 +Qr−4(qk;q)

are simple for all k.

The restriction to simple eigenvalues imposed in the last sentence of Theorem 1
is not significant in practice [5]. The real restriction is the size of the constants
cp(n,m) and c(n,m), which rapidly become small as κr(n,m) increases [5].
Theorem 1 shows that, for boundary conditions (4) and (5), κr(n,m) increases
by a factor O(n1/2) when m increases from n to n+ 1, but, when m > n+ 1 ,
it gives no information on κr(n,m), or even on whether Λ ′r(0) is singular.
However, numerical results [5] show that Λ ′r(0) remains nonsingular for m >

n+1 , but that κr(n,m) increases quite rapidly asm is increased beyond n+1,
especially for Problem 1(5). This increase in κr(n,m) substantially reduces
the size of the constants cp(n,m) and c(n,m) in Theorem 1, and also increases
the sensitivity of the computed solution to errors in the eigenvalue data [5].
This limits the range of values of (m− n) for which the method is effective,
though the limitation is not as severe as for the two spectra problem [4].

Nevertheless the corrected Numerov method performed well for a modest
range of m− n. For a given (small) value of m− n and for q ∈ C1, it gave
O(h3r) convergence to the true value of q as mesh length hr → 0 except near
the boundary, where convergence was O(hr). For q(x) = |2− x|, convergence
was also O(hr) near (π − 2), the mirror image point of the discontinuity
of q ′ at 2. Convergence near 2 for the problem with q given on (0,π/2) was
also O(hr). At other points away from the boundaries, convergence, though
less regular than for q ∈ C1, was still better than O(h2r) [5].

Why does a discontinuity of q ′ at 2 affect the convergence of our method not
only at 2 but also at the mirror image point (π− 2)? A possible explanation
is the importance of Fourier coefficients in the asymptotic expansion of the
eigenvalues [2, 4, 5, 12]. For example, it is known [5] that if q ∈ L2(0,π) then

λ
(0)
i = i2+ q− π−1

∫π
0
q(t) cos(2it)dt+αi/i , where q is the mean value of q

and {αi}
∞
i=1 ∈ `2. The even Fourier cosine coefficients give information about

(q+ q̂)/2 (the part of q that is even about π/2) rather than the odd part,
(q− q̂)/2 . Since generally αi 6= 0 , not all the information in the eigenvalues
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concerns these Fourier coefficients, but dominance of the Fourier term could
be expected to lead to some symmetry in the errors.

Table 1 shows another symmetry result, which was apparent in all our
numerical results, especially those for smoother q. The errors in our computed
results normally changed significantly when q in (1) was replaced by q+ δq ,
even when δq was quite small, but when q was replaced by its mirror
image q̂, the change in the error obtained by Numerov’s method was very
small, although none of our test problems involved symmetric q. Table 1
compares the errors for Problem 1(4) when q(x) = x2(π − x)/2 , so that
q̂(x) = x(π−x)2/2 . Similar symmetry effects appeared in the results obtained
by the second order method, but the effect was much less clear than with
Numerov’s method. Note that, because of the high accuracy of our results,
the errors in Table 1 are multiplied by 103 for ease of tabulation.

Table 1 also illustrates another feature of our Numerov results for C1 func-
tions. The errors at successive grid points generally alternated in sign and
decreased monotonically in magnitude away from the boundary. (The very
few exceptions occur at points where the error was less than about 10−7 and
can be explained by tiny errors in the eigenvalue data.)

For both the Hochstadt–Lieberman problem and the two spectra problem
we have similar limitations on the relative sizes of the two data sets used.
The extent to which these limitations can be overcome is an open question.
Our method for the two spectra problem [4] requires that exactly n or n+ 1
eigenvalues of (1) and (5) must be used when n eigenvalues of (1) and (4)
are used. This is related to the fact that, in a sense, the corresponding
uniqueness theorem requires that half of the information be provided by each
of (4) and (5), though adding a finite number of elements to an infinite set does
not change its cardinality. A method [19] suggested for supplementing the
eigenvalue set for the Hochstadt–Lieberman problem may be more useful for
the two spectra problem. This is because it is normally the lowest eigenvalues
that are known, and the method uses interpolation when missing eigenvalues
are lower than some known ones (as is the case for the two spectra problem),
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Table 1: 103 × (Error at jh) in the Numerov results when n = 30 and
q(x) = x2(π− x)/2 .
m− n −1 0 2

j q q̂ q q̂ q q̂

1 −4.915 −4.917 −4.823 −4.825 −4.673 −4.675
2 1.758 1.762 1.718 1.721 1.666 1.670
3 −0.874 −0.875 −0.848 −0.849 −0.824 −0.825
4 0.516 0.517 0.496 0.498 0.483 0.486
5 −0.343 −0.343 −0.325 −0.326 −0.318 −0.319
10 0.095 0.096 0.081 0.081 0.081 0.081
15 −0.048 −0.048 −0.034 −0.034 −0.035 −0.036
20 0.034 0.032 0.017 0.017 0.018 0.018
25 −0.026 −0.025 −0.006 −0.007 −0.008 −0.008
30 0.001 0.001 0.001 0.001 0.002 0.002

but requires the riskier process of extrapolation when the known eigenvalues
are all less than the missing ones.

The requirement m > n − 1 in Theorem 1 may also be related to the
uniqueness result [17]. I plan to consider elsewhere the case m < n − 1
with not all known eigenvalues coming from the same boundary conditions.
However, since the problem should be easier to solve when we have more
prior information on q, the problems associated with larger values of m− n
may be more tractable. This suggests some ideas for future research. The
traditional choice of uniform mesh was made because it gives a closed form
expression for the correction, but asymptotic correction was also successful
when no closed form expression is available [14, 20]. It is possible a suitable
choice of mesh could reduce the growth of κr(n,m) [5]. Since the proof [5] of
convergence in Theorem 1 does not require the correction be calculated using
constant q, it may also be useful to calculate the correction as the error in
the finite difference estimates obtained with some other choice q̃ of q, using
the known values of q on (c,π) [5]. Results of Rafler and Böckmann [29]
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for another method, suggest that a non-constant q̃ may be especially useful
when q has jump discontinuities. If initial results indicate that q has jump
discontinuities, the choice of q̃ could be refined iteratively so that it has
similar discontinuities.
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