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Abstract

Sparse approximate inverses are applied as preconditioners for the
fractional step solution of the Navier–Stokes equations. An advantage
of this method is that its implementation requires only matrix-vector
products and hence is relatively easy to parallelise. Since the coefficients
for the pressure Poisson equation are constant, sparse approximate
inverses need to be constructed only once, and are recalled in the
subsequent iterations. Using the three dimensional turbulent channel
flow as a test case, this study shows that the sparse approximate
inverse preconditioners have comparable sequential performance to the
Incomplete Lower-Upper preconditioner with same amount of fill to
the original coefficient matrix.
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1 Introduction

In viscous incompressible flow simulations, fractional step methods are applied
to the Navier–Stokes equations to simplify the coupling between the pressure
and velocity. The computation of the pressure equation often consumes most
of the total computation time of the Navier–Stokes equations, particularly
for high accuracy solutions [1]. One way to accelerate the convergence is
by preconditioning. Many studies have been conducted on preconditioned
systems in various applications [3, 5, 6, 7, 8, 9, e.g.]. However, no single
preconditioner is the most effective for every problem. A given preconditioner
may perform very well in some cases, but fail in other cases [3, 11]. This
study focuses on the effectiveness of various preconditioners used to solve the
Navier–Stokes equation via the fractional step method.



1 Introduction C583

1.1 Pressure Poisson equation

One of the difficulties in incompressible flow simulations is caused by the
coupling between pressure and velocity in the momentum equations. Using
Adams–Bashforth and Crank–Nicolson methods for the time discretisation of
the advective and diffusive terms respectively, the Navier–Stokes equations
with negligible body force is

vn+1 − vn

∆t
+

[
3

2
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]
= −Gpn+1 +

1

2Re
L(vn+1 + vn), (1)

Dvn+1 = 0 , (2)

where H, G, L and D are the advection, gradient, Laplace and divergence
operators, respectively. The discrete velocity is v, the discrete pressure p and
the time level n.

One way to simplify the Navier–Stokes equations is to decouple the pressure
and velocity terms, using a divergence free velocity constraint. This results in
two separate equations, one involving momentum terms and the other involv-
ing pressure term. The latter is the Pressure Poisson Equation (ppe) shown
in Equation (4). Armfield and Street [1] compared the time accuracy and
efficiency of various fractional step schemes. Application of the fractional step
method with second order pressure correction (P2) results in the equations

v∗ − vn
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]
= −Gpn +
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2Re
L(v∗ + vn), (3)

Lπ =
1

∆t
Dv∗, (4)

where π is the pressure correction. The intermediate velocity field, v∗, is
not necessarily divergence free. A correction to v∗ is then applied using the
gradient of π to give a divergence free velocity, vn+1, while π provides an
update for the pressure, that is,

vn+1 = v∗ − ∆tGπ and pn+1 = p∗ + π . (5)
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In the solution of the ppe, the coefficient matrix, which is the discrete form
of the Laplace operator, is constant. Computing the solution of the ppe
may account for up to 95% of the runtime in high accuracy simulations [1].
Thus, accelerating the convergence of the ppe will significantly improve the
overall efficiency of the Navier–Stokes solver. Preconditioning, implemented
in the solution of ppe, can then greatly enhance the performance of the
solver. Saad [11] comments that a good preconditioning method has a greater
influence on the rate of convergence of the ppe than the selection of the
iterative solver.

Many preconditioning techniques have been developed and in general di-
vided into two types. The first type is a preconditioning matrix M that
approximates the original coefficient matrix A, or M ≈ A . Examples of
this class are Jacobi, Gauss–Seidel, Symmetric Successive Over Relaxation
(ssor) and various forms of Incomplete Lower-Upper (ilu) preconditioners.
While simple methods like Jacobi, Gauss–Seidel and ssor are often not effec-
tive, ilu-variant preconditioners greatly improve the rate of convergence [11].
However, the implementation of ilu in the solver is highly sequential. The
second type of preconditioner is the sparse approximate inverse, in which the
preconditioner approximates the inverse of the original matrix, M ≈ A−1.
The implementation of sparse approximate inverses in the solver requires only
matrix-vector products in each iteration, and thus is fairly straightforward to
parallelise.

1.2 Sparse approximate inverse preconditioners

A number of studies developed sparse approximate preconditioners [5, 6, 7,
8, 9]. The most popular are the Sparse Approximate Inverse (spai) method,
which is based on the minimisation of the Frobenius norm, and the fac-
torised sparse Approximate Inverse (ainv) method, which is based on the
biconjugation algorithm.

The spai preconditioner developed by Grote and Huckle [8] is based on the
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minimisation of ‖AM− I‖, for right preconditioning, or ‖MA− I‖, for left
preconditioning. Because the computation of of the 1-norm or the 2-norm is
quite expensive, the minimum ‖AM− I‖ is computed in the Frobenius norm,
that is,

‖AM− I‖2F =
nk∑
k=1

‖(AM− I)ek‖22 , (6)

where nk is the number of columns. Each column of M, denoted mk, is
constructed independently in separate least squares problems,

min
mk

‖Amk − ek‖2, k = 1, . . . ,nk, (7)

with ek the unit basis vector. If M is sparse, only a small number of least
square problems need to be solved and, thus, in this case the construction
of M will be fast. The construction initially starts with a certain sparsity
pattern and subsequently adds the nonzero entries in M until it reaches the
maximum number of nonzeros or until the 2-norm residual is below a specific
value [8].

Benzi and Tůma [4, 5] developed the ainv method, which constructs fac-
torised sparse approximate inverse preconditioners based on the biconjugation
algorithm. The biconjugation algorithm computes two A-biconjugate sets of
vectors, {zi}

nk

i=1 and {wi}
nk

i=1 , such that wT
iAzj = 0 if and only if i 6= j . Defining

Z and W to be matrices whose columns are formed from the A-biconjugate
vectors,

Z = [z1, z2, . . . , znk
] and W = [w1, w2, . . . , wnk

], (8)

with pi = wT
iAzi 6= 0 , then

WTAZ = D = diag(p1,p2, . . . ,pnk
). (9)

Thus, the inverse of A is

A−1 = ZD−1WT =

nk∑
i=1

ziw
T
i

pi
. (10)
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To obtain a sparse approximation of A−1 a dropping strategy is used, removing
small entries below a certain drop tolerance. This means that any value in M
that is below the tolerance value is omitted. A smaller drop tolerance results
in a denser M. Benzi and Tůma [5] detail the algorithm.

For a given number of nonzero entries, factorised methods (e.g., ainv) ap-
proximate the inverse better than nonfactorised methods (e.g., spai) [4, 7].
Benzi and Tůma [3] found that the most robust preconditioners are the ilu-
variant methods, which help to solve systems that would not converge without
preconditioning. The simplest variant of ilu, denoted ilu(0), is obtained by
restricting the number of nonzeros of the lower and upper matrices to be equal
to that of the original matrix A. Benzi and Tůma [3] further concluded that
ainv and spai gave approximately the same rate of convergence as ilu(0), in
terms of the number of iterations needed to converge.

In the Navier–Stokes application, the important characteristic of the pressure
correction equation is that the coefficient matrix of the system remains
constant while the grid spacing is fixed. This suggests a benefit in using
approximate inverses as preconditioners. Sparse approximate inverses need
to be constructed and stored only once, and are recalled in each subsequent
time step. An advantage of this method is that its implementation requires
only matrix-vector products and hence is relatively easy to parallelise. Thus,
this study focuses on testing the effectiveness of various preconditioners to
enhance the performance of the pressure correction fractional step method
used in the solution of the Navier–Stokes equations.

2 Methodology

Sparse approximate inverse preconditioners are implemented for the pressure
correction equation in the P2 Navier–Stokes solver. Armfield and Street [1]
gave details of the P2 pressure correction scheme. The test case is three
dimensional turbulent flow in a channel with dimensions of 6.3× 2.0× 3.15 .
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The flow is driven by a pressure gradient in the x-direction with ∂P/∂x = 1.0
and Re = 180 (based on the friction velocity). The computational domain is
generated with a structured, non-staggered mesh. The standard mesh spacing
was detailed by Armfield et al. [2], and has a total of 53776 cells. Periodic
boundary conditions are applied in the x and z directions, and no-slip walls
at both y boundaries. The computation is also tested on a finer mesh, with
cell widths in the x, y and z directions approximately half of the standard
widths, giving a total of 293706 cells.

The equations are discretised using second order central differencing in space.
Time discretisations for the advective terms use Adams–Basforth differencing,
while Crank–Nicolson differencing is used for the diffusive terms. The iterative
solvers used are Jacobi for the momentum equations, and gmres for the ppe
equation. To minimise memory, gmres is restarted after five iterations. The
preconditioners tested are spai, ainv and ilu(0). The preconditioners are all
applied as right preconditioners, since they are found to be about 8% faster
than left preconditioners in this case. The time steps chosen are 10−3 for
the standard mesh and 5 × 10−4 for the finer mesh. The iterative solvers
are considered converged when the L2 norm of the residuals becomes less
than 10−4.

3 Results and discussion

Results are obtained on a single core of an Intel E8400 processor with 4 GB
1.6 GHertz ddr2 ram. Figure 1 shows the time averaged velocity profiles of
solutions with various preconditioners compared to the dns spectral method
of Moser et al. [10]. The preconditioner choice has no effect on the accuracy of
the solution, since the convergence of the solver is held by the constant residual
limit. This suggests that the use of preconditioners is mainly to accelerate the
convergence, without affecting the accuracy of the solver, as expected. For the
standard mesh, the solution of the ppe with no preconditioning requires more
than 3000 iterations to converge at each time step. Significant improvement
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is achieved with preconditioning, reducing the number of iterations to less
than approximately 100 at each time step. With preconditioning, the average
ppe computing time is about 67% of the total solution time.

Figure 2 shows the average ppe computation time per time step using the
spai preconditioned solver for various values of the tolerance parameter for
the residual of ‖Amk − ek‖2 for all k = 1, . . . ,nk . Overall, the ppe solver
time is faster with lower spai residual. For the standard mesh, the computing
time reaches a minimum at spai residual of around 0.15 and then increases
at even lower spai residual. This may be explained by Figure 3, which shows
the sparsity patterns of the matrix M for different spai residuals. Each
picture represents the nk by nk matrix, where nk also represents the number
of total cells. The ratio of the number of nonzero entries in M to the number
of nonzero entries in A is denoted by α. The pictures show that all the
resulting matrices M are diagonally dominant, but the amount of fill for
low spai residual is very high. This suggests that with low spai residual,
the matrix M becomes very dense as a result of a better approximation of
the dense matrix A−1, and the matrix-vector multiplications in the solver
require more floating point operations. Therefore, it is important to find the
parameter which achieves the optimum performance for the preconditioning
method. For this case, the optimum spai residual is 0.15. For the finer mesh,
the optimum spai residual moves to 0.1. This suggests that the optimum
spai residual changes with grid size, to lower values with finer meshes.

The ainv results are similar to those of the spai. Figure 4 shows the average
ppe solver time per time step for various ainv drop tolerances. In this study,
absolute drop tolerance is used, meaning that any value in M that is below the
tolerance value is omitted. A smaller drop tolerance results in a denser M. As
in spai, the solver time reaches a minimum at a certain drop tolerance value.
Again, a very dense M does not always represent an effective accelerator. For
the standard mesh, the optimum ainv drop tolerance is 0.02. For the finer
mesh, the optimum ainv drop tolerance shifts to 0.01, suggesting that the
optimum value of the dropping parameter depends on the grid size, similar
to that for spai. Figure 5 depicts examples of the ainv matrices for three
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Figure 1: Time averaged velocity profiles compared to dns spectral
method [10].
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Figure 2: Averaged spai preconditioned solver time per time step.

α = 0.89 α = 3.65 α = 7.63
(a) spai residual = 0.3 (b) spai residual = 0.15 (c) spai residual = 0.1

Figure 3: Preconditioner matrices for different spai residual parameters.
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Figure 4: Averaged ainv preconditioned solver time per time step.

drop tolerances on the standard mesh. Interestingly, although the resulting
patterns are highly diagonal, they are slighty different from those obtained
from spai (shown in Figure 3) with about the same amount of fill.

Figure 6 shows the averaged preconditioned solver time per time step against α,
the ratio of fill in the matrix M to the matrix A. Comparing the effectiveness
of sparse approximate inverse preconditioners, the overall performance of
ainv is slightly better than that of spai for the finer mesh computation. In
contrast, for the standard mesh, spai performs better than ainv for very
sparse patterns. The optimum α, the optimum ratio of the number of nonzero
entries in M to the number of nonzero entries in A, which corresponds to
the optimum preconditioner parameter, doubles as the cell size is reduced by
approximately half in the x, y and z directions. The performance of sparse
approximate inverse preconditioners are also compared to ilu(0), which is
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α = 0.92 α = 4.26 α = 7.40
(a) ainv drop = 0.2 (b) ainv drop = 0.02 (c) ainv drop = 0.01

Figure 5: ainv matrices for different absolute drop tolerance parameters.

known to be an effective preconditioner [11]. The ilu(0) preconditioned
solver time is much lower than those of the sparse approximate inverses. This
suggests that ilu(0) is the best preconditioner on a single processor, having
the smallest computing time per time step, and less fill than that of the
optimum for the sparse approximate inverse methods.

4 Concluding remarks

This study shows that for the pressure Poisson equation used in the pres-
sure correction Navier–Stokes solver (P2), the sparse approximate inverse
preconditioners provide comparable sequential performance to ilu(0). Sparse
approximate inverses require only matrix-vector products in their imple-
mentation on the solvers, and thus will be of benefit in parallel computing.
The sparse approximate inverse methods considered have about the same
performance, with ainv slightly outperforming spai on the finer mesh com-
putation, for the same number of fills in the case tested. Future work will be
undertaken on the parallel implementation of the sparse approximate inverse
preconditioners for the Navier–Stokes solvers.
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Figure 6: Averaged preconditioned solver time per time step compared to
ilu(0).
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