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Electrokinetic development length of
electroviscous flow through a contraction
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Abstract

This study presents an analysis of the electrokinetic development
length of electroviscous flow through a slit-like contraction. The effect
of contraction ratio, electric double-layer thickness and wall surface
charge on the electrokinetic development length of electroviscous flow
is quantified. An order of magnitude expression for the electrokinetic
development length is derived.
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1 Introduction

Micro-electro-mechanical systems (mems) offer great promise for many appli-
cations in biotechnology and chemical industries. Typical applications require
the transport of fluids through non-uniform geometries including contractions
and expansions. A fundamental understanding of flows at the micron scale
is critical to ensure optimisation of mems. Electrokinetic effects due to the
presence of ions in the fluid become important at these scales (Stone et al.,
2004). The presence of a charged surface attracts counter-ions in the liquid,
forming a diffuse electric double layer (edl) (Masliyah and Bhattacharjee,
2006). Electroosmotic flow is driven by the application of an external electric
field, whereas electroviscous flow is driven by applied pressures. Steady state
electroviscous flow usually implies that the total current is zero. When the
edl thickness is significant compared to the channel width, the apparent
viscosity of the fluid increases (Davidson and Harvie, 2007).

Modelling and analysis of flow through microfluidic devices generally assumes
that fully developed flow is present. The development length of laminar flow in
pipes and channels without electrokinetic effects has been well defined (Durst
et al., 2005). The development length of electroosmotic flow in a microchannel
has also been investigated (Yang et al., 2001, 2005). However, no attempt has
been made to quantify the electrokinetic development length of electroviscous
flow. Hence, this study presents numerical results and analysis in order to
quantify the electrokinetic development length of electroviscous flow in a



2 Method C839

W

dW

x

y

Lout

Lin

n

Figure 1: Schematic of contraction flow geometry with inlet channel half-
width W and contraction ratio d.

slit-like contraction.

2 Method

2.1 Model description

The model presented in this study consists of a 1 : 1 symmetric electrolyte
solution flowing through a slit-like contraction (Figure 1). The inlet channel
half-width is defined as W, and the outlet channel half-width as dW, where
d is the ratio of the contraction width to the inlet channel width. The fluid
is assumed to have constant viscosity µ, constant density ρ, permittivity ε,
and mean velocity V̄ . The cations (n+) and anions (n−) present in the
electrolyte have equal diffusivity coefficients D+ = D− = D , and equal
valencies z+ = −z− = z . The average ionic concentration throughout the
fluid is n0, representing the local geometric mean of both ion species (Harvie
et al., 2011; Biscombe et al., 2011). A uniform, constant surface charge
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density σ is assumed to be present on the walls of the channel.

The governing dimensionless equations are the Poisson equation relating the
electric potential U to the local charge density (n+ − n−),

∇2U = −
1

2
K2(n+ − n−), (1)

the Nernst–Planck equation ensuring conservation of each ion species,

∂n±
∂t

+∇ · (un±) =
1

Re Sc

[
∇2n± ±∇ · (n±∇U)

]
, (2)

and the Navier–Stokes equations with an electrical body force term,

∂u

∂t
+∇ · (uu) = −∇P +

1

Re
∇ ·

[
∇u+ (∇u)T

]
−
BK2

Re2
(n+ − n−)∇U , (3)

∇ · u = 0 , (4)

where u is the fluid velocity, and P is the pressure. Equations (1)–(4) have
been non-dimensionalised using W as the length scale, V̄ as the velocity scale,
n0 at the inlet as the ion number density scale, and kT/ze as the electric
potential scale. The dimensionless numbers present in Equations (1)–(4) are

Re =
ρV̄W

µ
, Sc =

µ

ρD
, B =

ρk2T 2εε0

2z2e2µ2
, K2 =

2z2e2n0W
2

εε0kT
, (5)

where Re is the Reynolds number, Sc is the Schmidt number, K is the
dimensionless inverse Debye length (proportional to the ratio of the channel
half-width W to the edl thickness), and B is a material parameter that is
fixed for a given liquid at a constant temperature. The constants k, e, and ε0
are the Boltzmann’s constant, elementary charge and the permittivity of free
space, respectively.

The permittivity ε of the wall is considered negligible, allowing the wall
boundary condition for the electric potential to be written

∂U

∂n
= S =

zeσW

εε0kT
(6)
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where n is the normal vector at the channel wall pointing out from the flow,
and S is the dimensionless surface charge density.

The Reynolds number is set to 0.01, the Schmidt number to 1000, and the
B parameter to 2.34 × 10−4; these are typical values for water in a glass
microchannel (Davidson and Harvie, 2007). A uniform staggered grid with
32 mesh cells per unit length W is used to solve the governing equations given
by Equations (1)–(4). Davidson and Harvie (2007) gave a detailed description
of the numerical method. Simulations on a grid with 16 mesh cells per unit
length W yielded a difference of less than 1% for the overall electric potential
drop.

The simulation is integrated forward in time until the total dimensionless cur-
rent passing through both the inlet and outlet to the domain falls below 10−7,
ensuring that the electroviscous flow solution has been reached.

2.2 Development length definition

To determine the development length of the electroviscous flow in the contrac-
tion, the following method was applied. First, the axial electric field profile Ex
at the outlet of the domain is compared to the axial electric field profile Ex
one channel half-width W upstream. If the condition∣∣∣∣Ex(xout −W,yj) − Ex(xout,yj)

Ex(xout,yj)

∣∣∣∣ < 10−4 for all yj (7)

is met, the flow is considered fully developed. Here the subscript j refers to
the discrete values of y defined on the computational mesh. The development
length Ld is then defined as the distance along the contraction where the
condition ∣∣∣∣Ex(Ld,yj) − Ex(xout,yj)Ex(xout,yj)

∣∣∣∣ < 10−2 for all yj (8)

is first met. This definition of development length is analogous to that
for purely hydrodynamic flow, except that it is based on the axial electric
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a)

b)

Figure 2: Magnitude of dimensionless charge density distribution (n+ − n−)
for scaled inverse Debye length K = 2 and contraction ratio d = 0.25 :
(a) surface charge density parameter S = 1 ; (b) surface charge density
parameter S = 4 . Flow is from left to right. The contour scale is logarithmic.

field rather than the velocity. The development length is this study is
based on the axial electric field because in electroviscous flow with Peclet
number Pe = Re Sc = 10 the velocity profile is relatively insensitive to the
electroviscous resistance, whereas the generated axial electric field is not.
Another suitable quantity is the local ion concentration n0, not considered in
this study.

3 Results and discussion

The magnitude of the dimensionless charge density distribution in the channel
for scaled inverse Debye length K = 2 and contraction ratio d = 0.25 is shown
in Figure 2. The contour scale is logarithmic to show clearly the regions
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a)

b)

Figure 3: Magnitude of dimensionless charge density distribution (n+ −
n−) for scaled inverse Debye length K = 2 and contraction ratio d = 0.5 :
(a) surface charge density parameter S = 1 ; (b) surface charge density
parameter S = 4 . Flow is from left to right. The contour scale is logarithmic.

of high and low charge densities present. As the flow adjusts from fully
developed channel flow in the inlet to fully developed channel flow in the
contraction, it is apparent that there is a region of undeveloped flow that
starts just upstream of the contraction and extends downstream. The length
of the undeveloped region is much longer for the lower surface charge density
parameter depicted.

Figure 3 shows the magnitude of dimensionless charge density distribution
in the channel for scaled inverse Debye length K = 2 and contraction ratio
d = 0.5 . Again, a region of undeveloped flow is observed, with the lower
surface charge density S = 1 having a longer undeveloped region.

To elucidate the effect of surface charge density S on the development length,
the axial electric field Ex along the centreline of the channel is plotted in
Figure 4a) for scaled inverse Debye length K = 2 and contraction ratio
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d = 0.25 , and various values of S. For all values of surface charge density S
plotted, the axial electric field Ex is constant in the inlet until a short distance
upstream of the contraction. The axial electric field Ex then increases in
response to the change in geometry, eventually attaining a steady value at
some distance downstream of the contraction. The fully developed axial
electric field magnitude in the contraction decreases with surface charge
density S. Despite this, the distance over which the axial electric field Ex
reaches the fully developed value in the contraction increases with decreasing
surface charge density S.

Figure 4b) shows the axial electric field profile across the channel at various
distances downstream of the contraction, for scaled inverse Debye length
K = 2 , contraction ratio d = 0.25 and surface charge density parameter
S = 2 . Immediately after the contraction, at x = 5 , the axial electric
field profile is non-uniform, and much lower than the fully developed profile.
However, further downstream the axial electric field profile becomes uniform
as it approaches the fully developed profile.

The development length of the flow based on the axial electric field profile
is depicted in Figure 5 for two values of scaled inverse Debye length K and
contraction ratio d. The development length of the flow increases with decreas-
ing S for all values of K and d. This increase is most noticeable at the lower
scaled inverse Debye length K = 2 . At low values of dimensionless surface
charge densities S the development length is greater for lower contraction
ratios. This effect is reversed as S increases.

To quantify the effect of scaled inverse Debye length K, dimensionless surface
charge density S and contraction ratio d on the development length, an
expression is derived for the excess charge ∆Q present in the channel due to
the contraction. Because the channel changes in width as the liquid flows
through the contraction, the fully developed axial electric field magnitude
increases. Applying Gauss’ theorem to Equation (1), a difference in average
axial electric field magnitude must result in an accumulation of charge at
and around the contraction. This charge accumulation is equal to the total
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Figure 4: (a) Dimensionless axial electric field Ex on the centreline for scaled
inverse Debye length K = 2 , contraction ratio d = 0.25 and different values
of surface charge density parameter S; (b) dimensionless axial electric field Ex
across the contraction for scaled inverse Debye length K = 2 , contraction ratio
d = 0.25 and surface charge density parameter S = 2 for various distances
downstream of the contraction. The contraction begins at x = 5 .
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Figure 5: Development length Ld of the axial electric field profile as a function
of dimensionless surface charge density S for different scaled inverse Debye
lengths K and contraction ratios d. Best fit curves are also shown.

charge in the channel over a suitable control volume beginning upstream
and ending downstream of the contraction, minus the charge present on the
channel wall parallel to the flow over the length of the control volume. The
resultant quantity is the excess charge ∆Q (Appendix A), where

∆Q =
4

K2
[dEout − Ein − S(1− d)] (9)

in which Ein and Eout refer to the fully developed axial electric fields in the
inlet and contraction respectively. The fully developed axial electric fields
are also functions of K and S (Harvie et al., 2011; Biscombe et al., 2011).
Figure 6 shows the excess charge present in the channel calculated numerically
and analytically with Equation (9). The numerical and analytical results are
consistent.

It is reasonable to assume that the development length of the flow is pro-
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Figure 6: Excess charge ∆Q in channel due to the contraction for different
scaled inverse Debye lengths K and contraction ratios d: comparison of
numerical results (symbols) and Equation (9) (lines).

portional to the amount of excess charge present due to the contraction. If
the magnitude of the excess charge is large, then the flow will take longer to
recover to full development. Hence, an order of magnitude relationship for
the development length Ld is obtained by dividing the total excess charge ∆Q
by the magnitude of the charge q across the cross-section of fully developed
flow in a uniform channel of half-width W:

|q| =
4S

K2
. (10)

This gives an expression for the development length Ld of the form

Ld ∝
∆Q

|q|
=
1

S
[dEout − Ein] − (1− d). (11)

This relationship is plotted in Figure 7 for several values of scaled inverse
Debye length K, contraction ratio d and dimensionless surface charge density S.
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Figure 7: Development length Ld based on axial electric field Ex as a function
of S−1(dEout − Ein) − (1 − d) for scaled inverse Debye lengths K = 2 and 4,
contraction ratios d = 0.25 and 0.5, and dimensionless surface charge densities
0.25 6 S 6 4 . The numerical results are shown by the symbols, and the lines
of best fit (12) are plotted with dashed lines.

Also shown on the plot are the lines of best fit

Ld = A

[
1

S
(dEout − Ein) − (1− d)

]
+ B . (12)

The values of A and B are shown in Table 1. It is apparent that the devel-
opment length increases monotonically with the function defined in Equa-
tion (11), showing that the function defined is a good indicator of development
length magnitude. However, the assumption made in deriving Equation (11),
defined in Equation (10), does not cause the data to collapse to a single
curve, and a dependence on both contraction ratio d and scaled inverse Debye
length K is still present. Despite this, the gradients of the lines of best fit only



4 Conclusions C849

Table 1: Best fit parameters for Equation (12)
K d A B

2 0.25 1.6 3.8
2 0.5 2.5 3.9
4 0.25 3.1 4.6
4 0.5 3.6 5.5

vary between 1.6 and 3.6, demonstrating that Equation (11) is an accurate
order of magnitude relationship for the electroviscous development length.

4 Conclusions

The electrokinetic development length of electroviscous flow in a slit-like
contraction is quantified for different values of the scaled inverse Debye
length K, contraction ratio d, and dimensionless surface charge density S. Over
the range of dimensionless surface charge densities S studied, the development
length Ld increases with decreasing S and scaled inverse Debye length K.
For surface charge densities S & 1 , the development length increases with
increasing contraction ratio d. To explain these observations, an analytical
expression for the excess charge in the contraction is derived to obtain an
expression for the development length. It is shown that the development
length increases monotonically with the quantity S−1 [dEout − Ein] − (1− d).
An order of magnitude expression for the development length is

Ld ∼ 2

[
1

S
(dEout − Ein) − (1− d)

]
(13)

Future work will focus on refining the analysis for flows in square channels
and pipes.
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Figure 8: Control volume V (defined by the dashed line) of length L encom-
passing contraction.

A Derivation of excess charge ∆Q

Consider the control volume V depicted in Figure 8. The Poisson equation (1)
is integrated over the control volume V to give∫

V

∇2UdV = −
1

2
K2

∫
V

(n+ − n−)dV . (14)

Gauss’ divergence theorem reduces the left-hand side volume integral to a
surface integral over the boundary of V , yielding∫

A

∇U · ndA = −
1

2
K2

∫
V

(n+ − n−)dV . (15)

If the length of the control volume V is long enough, the flow at either end is
considered fully developed. Hence, Equation (15) is written as

− dEout + Ein + SL+ S(1− d) = −
1

2
K2

∫
V

(n+ − n−)dV , (16)
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where Ein and Eout refer to the fully developed axial electric fields in the inlet
and contraction respectively. The fully developed axial electric fields are
functions of K and S.

The integral on the right-hand side can be written as the addition of two
contributions to the charge in the control volume

−
1

2
K2

∫
V

(n+ − n−)dV = SL−
1

2
K2

[
1

2
∆Q

]
, (17)

where the first term on the right-hand side of Equation (17) is the total
charge on the channel wall parallel to the flow over the length of the control
volume L, and ∆Q is the excess charge present in the channel due to the
contraction. Substituting Equation (17) into Equation (16) yields

− dEout + Ein + SL+ S(1− d) = SL−
1

4
K2∆Q . (18)

Rearranging to solve for ∆Q gives

∆Q =
4

K2
[dEout − Ein − S(1− d)] . (19)
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