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Numerical solution to the Saffman–Taylor
finger problem with kinetic undercooling

regularisation
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Abstract

The Saffman–Taylor finger problem is to predict the shape and,
in particular, width of a finger of fluid travelling in a Hele–Shaw
cell filled with a different, more viscous fluid. In experiments the
width is dependent on the speed of propagation of the finger, tending
to half the total cell width as the speed increases. To predict this
result mathematically, nonlinear effects on the fluid interface must be
considered; usually surface tension is included for this purpose. This
makes the mathematical problem sufficiently difficult that asymptotic
or numerical methods must be used. We adapt numerical methods
used to solve the Saffman–Taylor finger problem with surface tension
to instead include the effect of kinetic undercooling, a regularisation
effect important in Stefan melting-freezing problems, for which Hele–
Shaw flow serves as a leading order approximation when the specific
heat of a substance is much smaller than its latent heat. We find the
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existence of a solution branch where the finger width tends to zero
as the propagation speed increases, disagreeing with some aspects of
the asymptotic analysis of the same problem. We also find a second
solution branch, supporting the idea of a countably infinite number of
branches as for the surface tension problem.
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1 Introduction

In highly viscous flow, when a fluid of a certain viscosity is used to push a
more viscous fluid, the interface between the two fluids is unstable. This
phenomenon is known to mathematicians as the Saffman–Taylor instability,
after the pioneering experimental and analytical study of Saffman and Taylor
into the effect in the Hele–Shaw cell; an experimental device consisting of two
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Figure 1: A Saffman–Taylor finger consisting of air injected into a Hele–
Shaw cell filled with glycerin [1, Fig. 8] (reproduced with permission of the
publisher).

narrowly separated glass plates with the fluids sandwiched in between, which
effectively reduces the fluid flow problem to two dimensions [1].

Saffman and Taylor constructed a long, ‘narrow channel’ Hele–Shaw cell,
where fluid could be injected or removed at either end. By injection of the
less viscous driving fluid at one end, the instability leads to the formation
of long thin ‘fingers’ of the less viscous fluid, with a single finger eventually
dominating over the rest (see Figure 1). Saffman and Taylor observed that
the shape of the finger depends on the velocity of that finger. In particular, as
they were driven faster, the fingers’ widths tended to half that of the total cell.
In other words, letting λ ∈ [0, 1] be the ratio between finger width and cell
width, λ→ 1/2+ as speed increases. This posed an interesting mathematical
problem: how can we determine the finger shape and width as a function of
the speed?

The answer to this problem lies in the boundary condition we apply on
the interface between the two fluids. Saffman and Taylor used Bernoulli’s
condition, in which the pressure along the interface is constant. This results
in a linear boundary value problem which is solvable in closed form, but has a
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continuous family of solutions for any finger width λ and so does not predict
the width at all. Boundary conditions that do select for λ, for instance by
including the effects of surface tension, are nonlinear and are characterised by
a dimensionless parameter (such as a surface tension parameter σ) that goes
to zero as the finger speed goes to infinity. Problems with these boundary
conditions must be analysed using numerical or asymptotic methods, as exact
solutions can no longer be found using linear solution techniques.

McLean and Saffman [2] treated the Saffman–Taylor finger problem with
surface tension on the free boundary using complex variable techniques
to reduce the problem to a coupled nonlinear integro-differential system of
equations. This system was solved numerically by discretising the independent
variable at a set of node points and approximating derivatives and integrals by
finite difference formulae and the trapezoid rule, respectively. This numerical
approach subsequently showed that there are a countable infinity of solutions
with different widths for each value of the surface tension [3]. All these
solution branches have λ → 1/2+ as the surface tension parameter σ → 0 .
The asymptotic behaviour for small surface tension (equivalently, large finger
speed) has also been studied extensively and makes the same prediction,
although a beyond-all-orders (or exponential) asymptotic analysis is needed
to distinguish the discrete values of λ for which the solution exists [4, 5, 6].

Here we examine the less studied kinetic undercooling type boundary effect.
Kinetic undercooling is a condition of physical meaning in Stefan melting-
freezing problems, where the melting temperature is not constant but instead
weakly dependent on the speed of the moving front between the two phases.
The equations for Hele–Shaw flow can be considered a leading order approx-
imation to the Stefan problem for small specific heat, and in this context
the kinetic undercooling condition translates to a relationship between the
pressure on the interface and the normal interface velocity [7]. This problem
is characterised by a nondimensional kinetic undercooling parameter ε which,
as with σ for surface tension, goes to zero as finger speed increases.

Chapman and King [8] undertook the beyond-all-orders asymptotic analysis
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of the Saffman–Taylor finger with kinetic undercooling. The details, which are
similar to, but more difficult than, the surface tension case [4, 5, 6], provide
an asymptotic approximation valid for ε� 1 with λ− 1/2 = O(1) (that is,
for a given ε, solutions on sufficiently high branches so that λ is not yet close
to 1/2). Further analysis for λ − 1/2 = O(ε2/3) predicts that λ → 1/2+ as
ε → 0 , though the explicit form of the asymptotic relationship between ε
and λ is intractable in this limit.

We adapted the numerical discretisation scheme of McLean and Saffman [2] to
include kinetic undercooling instead of surface tension. Our major conclusion
is that a solution branch exists for which λ decreases to less than 1/2 for
some ε much greater than zero, which appears to be at odds with some
aspects of the asymptotic analysis. In particular, it appears that λ→ 0+ as
ε→ 0 on the lowest solution branch. The existence of an infinite number of
solution branches is suggested, but not confirmed.

2 Boundary integral formulation

Hele–Shaw flows are mathematically attractive since the fluid flow is effectively
two dimensional, and the pressure acts as a velocity potential, satisfying
Laplace’s equation, meaning complex variable techniques can be used. We
formulate the differential-integral system in the same manner as McLean and
Saffman [2] and Chapman and King [8], to whom we refer for more detail.

Consider the problem where a less viscous fluid (taken to be inviscid) is
injected into the left hand side of a Hele–Shaw cell with channel walls at
y = ±1 , initially filled with the more viscous fluid. Once the viscous finger
has developed and is moving at constant speed, we may set the frame of
reference so that the finger is steady. The driving inviscid fluid means the
viscous fluid has a nonzero velocity in the far field (as x→∞), which depends
on the speed of the finger’s propagation.

Given that the velocity potential φ (proportional to the pressure) satisfies
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Laplace’s equation, the velocity field is described in terms of either φ or the
streamfunction ψ by

u = φx = ψy , v = φy = −ψx ,

where subscripts denote partial derivatives. If the finger velocity is U, and
the far field velocity in the stationary frame of reference is V , the far field
conditions are

lim
x→−∞ψy(x,y) = −U , lim

x→∞ψy(x,y) = V −U .

Let the finger width be λ and (x,y) ∈ Γ be the coordinates of the free boundary
of the finger. Both the free boundary and channel walls are streamlines, so
taking ψ = 0 on the centreline x = 0 (and therefore also on Γ),

ψ(x,±1) = ±(V −U)⇒ ψ(−∞,y) = V −Uy ,

and since ψ(−∞, λ) = 0 we must have λ = V/U . It is convenient to scale
time such that V −U (the velocity as x→∞) is unity. In this case

U =
1

1− λ
, V = 1+

1

1− λ
.

2.1 Conformal mapping

Instead of attempting to apply some boundary condition on the free surface Γ ,
whose coordinates are unknown, we use a change of variables to map the free
surface to a fixed line segment. Let f = φ+ iψ be the complex potential, and
define the complex variable

ζ = ξ+ iη = eπf.

Assuming the finger is symmetric about the centreline, this maps one half of
the fluid domain outside the finger to the upper half ζ-plane, and the free
surface (letting φ = 0 at the nose of the finger) to the real line segment
ξ ∈ [0, 1], with ξ = 1 the nose of the finger, and ξ = 0 the tail as x→ −∞
(see Figure 2).
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Figure 2: A schematic of the fluid domain in the physical plane, and
the conformal mapping to the ζ = eπf plane. The letters A to E mark
corresponding points in each plane. The interface Γ maps to the line segment
ξ ∈ [0, 1].

2.2 Integral equation

The complex velocity

w(z) =
dφ

dz
= q̂e−iθ̂,

where q̂ and θ̂ are the speed and velocity angle. Since log(−w) = ln q̂−i(θ̂−π)
is an analytic function, its real and imaginary parts are related by the Hilbert
transform integral

ln q̂ = −
1

π
−

∫ 1
0

θ̂(ξ ′) − π

ξ ′ − ξ
dξ ′, (1)

since θ̂ = π everywhere on the ξ-axis except in [0, 1]. The dashed integral
sign indicates it is of Cauchy principal value type. Note that we need q̂→ 1

as φ→ −∞ (or x→∞) from the previous section, so that log(−w) vanishes
in the far field of the upper half plane.



2 Boundary integral formulation C131

2.3 Differential equation

In the Hele–Shaw context, the kinetic undercooling assumption is that the
pressure on the moving boundary is proportional to its normal velocity vn [8].
In the moving frame of reference this translates to

φ = cvn −
x

1− λ
, (2)

where c is the kinetic undercooling coefficient. Let the finger velocity U =
1/(1 − λ), so that vn = sin θ̂ /(1 − λ) . Defining s to be the arc length
parameter for the free boundary,

dφ

ds
= q̂ ,

dx

ds
= cos θ̂ ,

d

ds
=
dξ

dφ

dφ

ds

d

dξ
= −πq̂ξ

d

dξ
.

Differentiating (2) with respect to s results in the differential equation

q̂ = −
cπ

1− λ
q̂ cos θ̂ξ

dθ̂

dξ
−

1

1− λ
cos θ̂ . (3)

Lastly, we simplify (1) and (3) by defining q = (1− λ)q̂ and θ = θ̂− π . The
integro-differential system, with associated boundary conditions, becomes

2εq cos θξ
dθ

dξ
+ cos θ− q = 0 ,

lnq = ln(1− λ) −
1

π
−

∫ 1
0

θ(ξ ′)

ξ ′ − ξ
dξ ′ ,

ln(1− λ) =
1

π
−

∫ 1
0

θ(ξ)

ξ
dξ ,

θ(0) = 0 , θ(1) = −
π

2
, (4)

where ξ ∈ [0, 1], and

ε =
cπ

2(1− λ)
(5)

is the new kinetic undercooling parameter.
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2.4 Cauchy principal value and endpoint singularities

Before we proceed to the numerical solution method there are two issues that
must be dealt with. Firstly, a Cauchy principal value integral is difficult to
deal with numerically, so we subtract out the singular part:

−

∫ 1
0

θ(ξ ′)

ξ ′ − ξ
dξ ′ =

∫ 1
0

θ(ξ ′) − θ(ξ)

ξ ′ − ξ
dξ ′ + θ(ξ) ln

(
1− ξ

ξ

)
.

Secondly, McLean and Saffman [2] noted that in ξ, both θ and q are undif-
ferentiable at both endpoints. At ξ = 1 a square root singularity exists due
to the effect of the stagnation point on the conformal mapping. At ξ = 0

the power of the singularity α is obtained from assuming local expansions
θ ∼ aξα and q ∼ 1+ bξα. Substitution into the system (4) gives

2εαaξα = −bξα + O(s2α), bξα = a cot(πα)ξα + O(s2α),

so α is found numerically as the smallest root of the equation 2εα+cot(πα) =
0 . We now remove the endpoint singularities by the change of variable
t =
√
1− ξα , resulting in

− αε cos θq
1− t2

t

dθ

dt
+ cos θ− q = 0 , (6)

and

q = (1− λ)
[
(1− t2)−1/α − 1

]−θ/π
× exp

{
−
2

απ

∫ 1
0

t ′

(1− t ′2)1−1/α
θ(t ′) − θ(t)

(1− t ′2)1/α − (1− t2)1/α
dt ′
}

. (7)

3 Numerical method

To solve the coupled differential-integral system (4) we discretise the do-
main [0, 1] into N+ 1 evenly spaced node points

tj = j∆t , j = 0, . . . ,N ,
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where ∆t = 1/N , and seek θj ≈ θ(tj) and qj ≈ q(tj). For a given set of
θj values, we compute qj by numerical integration in (7), and the discretisation
of the differential equation (6) results in a nonlinear system of equations for θj.
We use Simpson’s rule for integration, and the third order finite difference
formula

∆θ1 =
θ0

3
−
θ1

2
+ θ2 =

θ3

6
and ∆θj =

θj−2

6
− θj−1 +

θj

2
+
θj+1

3
,

for j = 2, . . . ,N − 1 , for the derivative in (6), as well as for dealing with
the removable singularity in (7). The nonlinear system for the θi values was
solved using Newton’s method, using a finite difference approximation to
compute the Jacobian.

4 Results

The scheme outlined above was programmed in Matlab and run on a desktop
computer. For N = 50 , which produced sufficiently precise results for most
values of ε, the code took about 0.1 seconds to converge for each value of ε.

To observe a single branch of the relation between kinetic undercooling
parameter ε and finger width λ, we solved the nonlinear system starting
with ε = 1 using the Saffman–Taylor (ε = 0 , λ = 1/2) solution as an initial
guess. The kinetic undercooling parameter ε was then decreased gradually
to 0.001, using the previous solution as the initial guess at each value of ε.
The resulting dependence of λ on ε is provided as the lower line in Figure 3.
On this branch λ goes below 1/2 for finite λ, with λ→ 0+ as ε→ 0 .

We also found a second solution branch by starting at ε = 0.1 with the
Saffman–Taylor solution as initial guess and then increasing ε. Figure 3 plots
this solution branch, again using N = 50 .

As a numerical check we tested the convergence properties of the method
as N increases. While both integral and differential approximations are
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Figure 3: Two solution branches for finger width λ as a function of kinetic
undercooling parameter ε. The lower solution branch has λ→ 0+ as ε→ 0 .

theoretically third order, we found that the rate of convergence is dependent
on ε. For relatively large values (say ε ≈ 1), 50 node points was sufficient for
convergence to three decimal places. However, for small values convergence
was much slower. Figure 4 shows the change in λ over N for ε = 0.05 .
This figure also shows that the convergence was well behaved and decreasing,
which suggests that the existence of solutions with λ < 1/2 is not a numerical
artefact.

5 Discussion

We successfully adapted the numerical scheme of McLean and Saffman [2]
to the problem of viscous fingers with a kinetic undercooling condition on
the interface. The results predict the existence of a solution branch which
has λ→ 0+ as ε→ 0 . This is unexpected, given the asymptotic analysis [8],
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Figure 4: The value of λ computed for ε = 0.05 for increasing number
of node points N. Convergence is slow but well behaved and decreasing,
suggesting the existence of solutions with λ < 1/2 is not due to numerical
error.

which has λ− 1/2 = O(ε2/3) as ε→ 0 .

Our numerical work has also shown the existence of a second solution branch.
The asymptotics predicts the existence of a countable infinity of solution
branches, as with the surface tension problem. The existence of these branches
was demonstrated numerically for the surface tension problem [3]. While
we predict that a careful application of the same method to the kinetic
undercooling problem will confirm the existence of countably many solution
branches as well, this remains to be done systematically.

In order to fully understand the results of our study, it would be worth
performing a stability analysis on the problem. In the corresponding problem,
for which there is surface tension acting on the interface of the finger, the
lowest solution branch is linearly stable, while all others are unstable [9, 10, 11],
explaining why the lowest solution branch is that seen in experiments. For
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our case, in which surface tension is replaced by kinetic undercooling, an
analogous analysis would presumably indicate which branches are stable.

Similarly, a worthwhile extension would be to treat the time dependent
problem of an almost flat interface advancing along a long narrow channel,
eventually forming a single longer finger (that would become the travelling
wave finger in the long time limit). In this case the corresponding problem with
surface tension has been extensively examined [12, 13, 14, 15] and confirms
that ultimately a single finger emerges with the value of λ predicted by the
Mclean–Saffman solution (except for very small surface tension, where tip
splitting occurs). With surface tension replaced by kinetic undercooling, it is
not at all obvious what form the numerical solutions will take, and whether
kinetic undercooling has the effect of selecting the finger with λ = 1/2

(perhaps corresponding to solutions on the upper curve in Figure 3) or a long
needle with λ� 1 for ε� 1 (corresponding to the lower curve in Figure 3).

Finally, as we already noted, the original experiments of Saffman and Taylor [1]
and many others show that the physically relevant ratio for the selection
problem is λ = 1/2 , not λ = 0 . Thus we speculate that the proposed stability
and time dependent analysis above will show that the lower branch in Figure 3
is not seen in experiments. We conclude that great care must be taken when
applying the kinetic undercooling regularisation to Hele–Shaw problems, with
surface tension being the preferred mechanism.
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