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One dimensional combination technique and
its implementation
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Abstract

This article introduces the 1D combination technique and its imple-
mentation with parallel programming. I discuss two primary features
of the 1D combination technique: (1) its reduction of computational
cost, especially when combined with parallel programming and where
high accuracy is required; and (2) a resultant sacrifice of accuracy.
However, the loss of the accuracy can be bounded thus reducing its
significance.
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1 Introduction

The discretization of pdes by standard finite element approaches is limited to
problems with up to three or four dimensions, due to the curse of dimension-
ality. Zenger and others [1, 2] introduced sparse grid approximations and the
combination technique, which substantially reduces computational complexity
at a moderate cost in accuracy, allowing the numerical treatment of problems
with ten variables or more and making the numerical solution of finite element
methods feasible on computational equipment currently available.

My intention is to introduce new parallel implementation techniques to
increase the parallelism and reduce the parallel complexity in computation
for high dimensional problems. I study the one dimensional problem as a
model problem to illustrate these new parallel implementation techniques
which are applicable to higher dimensional cases. A one dimensional parallel
implementation technique is suggested here. I prove that in one dimension
the full grid approximation can be replaced by a linear combination of certain
partial fine grid approximations with a bounded error. The parallel speedup
is also discussed.
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2 Preliminaries

We study the following variational formulation of an elliptic boundary value
problem: find u ∈ H1([0, 1]) such that

a(u, v) = (f, v) for all v ∈ H1([0, 1]), (1)

where the bilinear form a(·, ·) is continuous and coercive in H1([0, 1]). Here
H1([0, 1]) is the Sobolev space W1

2([0, 1]) of functions with both their first
derivatives and themselves in L2([0, 1]). Assume that a(·, ·) takes the form

a(u, v) =
∫1
0
(a1u

′v′+a2u
′v+a3uv) where (·, ·) denotes the L2-inner product

and f ∈ L2([0, 1]).

To find the Ritz–Galerkin projection of the solution of (1) in some finite
dimensional subspace of H1([0, 1]), we introduce piecewise linear function
spaces. Let L ∈ N ∪ {0} and hL := 2−L. We define a uniform partition RL,
with level L of the region Ω, as a set of subintervals with width hL such that
the union of these subintervals is Ω and such that the intersection of two
subintervals of RL either consists of a common vertex of both subintervals or
is empty. Piecewise linear nodal hat functions φL,i (i indicates the ith nodal
point) form a basis of the approximation space VL ⊂ H1([0, 1]) corresponding
to the grid ΩL. The Ritz–Galerkin projection of the solution of (1) into the
space VL is the solution uL ∈ VL of

a(uL, vL) = (f, vL) for all vL ∈ VL . (2)

This equation leads to a linear system Mc = b where Mij := a (φL,j,φL,i)
and bi := (f,φL,i). This is termed as the full grid Galerkin method.

Before introducing the 1D combination technique, we introduce the following
notation.

1. Let Rk,− be a partition with level k ∈ N ∪ {0} of [0, 1/2]. Denote the
resulting grid by Ωk,− and the corresponding piecewise linear function
space by Vk,−. Thus, a function v ∈ H1([0, 1]) belongs to Vk,− if and
only if v|[0,1/2] belongs to the span of φk+1,i|[0,1/2] for i = 0, 1, . . . , 2k.



2 Preliminaries C647

2. Let R−,l be a partition with level l ∈ N ∪ {0} of [1/2, 1]. Denote the
resulting grid by Ω−,l and the corresponding piecewise linear function
space by V−,l. Thus, a function v ∈ H1([0, 1]) belongs to V−,l if and only
if v|[1/2,1] belongs to the span of φl+1,i|[1/2,1] for i = 2l, 2l + 1, . . . , 2l+1.

3. Let Rk,l be a partition with level k ∈ N∪ {0} of [0, 1/2] and level l ∈ N∪
{0} of [1/2, 1]. Denote the resulting grid by Ωk,l and the corresponding
piecewise linear function space by Vk,l. Thus, a function v ∈ H1([0, 1])
belongs to Vk,l if and only if v|[0,1/2] belongs to the span of φk+1,i|[0,1/2]
for i = 0, 1, . . . , 2k and v|[1/2,1] belongs to the span of φl+1,i|[1/2,1] for
i = 2l, 2l + 1, . . . , 2l+1.

Let PLu, Pk,−u, P−,lu, Pk,lu and ILu, Ik,−u, I−,lu, Ik,lu denote the Galerkin
projections and the interpolants of the solution u of (1) into the spaces VL,
Vk,−, V−,l, Vk,l, respectively. Vn,n = Vn+1 . By the uniqueness of the
Galerkin projection and the interpolant, for any u ∈ H1([0, 1]),

Pn,nu(x) = Pn+1u(x), n ∈ N ∪ {0},

In,nu(x) = In+1u(x), n ∈ N ∪ {0},

Ik,lu(x) = (Ik,− ◦ I−,l)u(x), n ∈ N ∪ {0}.

For notational convenience, the symbols /, ' and u are used in this article.
The expressions x1 / y1 , x2 ' y2 and x3 u y3 mean that x1 6 C1y1 ,
x2 > C2y2 and c3y3 6 x3 6 C3y3 for some strictly positive constants C1,
C2, C3, and c3 that are independent of mesh parameters. The following two
lemmas from Pflaum and Zhou [3] are used later.

Lemma 1 ([3, Lemma 2]). Let L ∈ N ∪ {0} and h = 2−L. For e = [xe −
h/2, xe + h/2] ∈ ΩL ,∫

e

w− ILw =

∫
e

Eew
′′, where Ee(x) =

1

2
(x− xe)

2 −
1

8
h2.

Lemma 2 ([3, Lemma 3(ii)]). Assume w ∈ H3([0, 1]). Let L ∈ N ∪ {0}

and h = 2−L be the mesh size of the uniform grid ΩL on [0, 1]. If φ,φ′ ∈
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L∞([0, 1]), then there exists f1, f2 ∈ VL such that∫ 1
0

φ(w− ILw)v
′ = (f1, v) for all v ∈ VL, with ‖f1‖L2 / h2‖w‖H3 ,∫ 1

0

φ(w− ILw)
′v = (f2, v) for all v ∈ VL, with ‖f2‖L2 / h2‖w‖H3 .

3 One dimensional combination technique

Definition 3.

ucn :=
∑
k+l=n

Pk,lu−
∑

k+l=n−1

Pk,lu where n > 1 . (3)

Theorem 4. Assume u ∈ H3([0, 1]), a1 ∈W1∞([0, 1]) and a2,a3 ∈ L∞([0, 1])
where a1, a2 and a3 are the coefficients in the bilinear form a(u, v). Then
for n ∈ N ,

‖Pn,nu− ucn‖L2 / h2n log2(h
−1
n )‖u‖H3 , ‖Pn,nu− ucn‖H1 / hn‖u‖H3 . (4)

3.1 Proof of Theorem 4

Introduce the indices α,β ∈ {0, 1}2 with the norm |α| = α1 + α2 , and let
0 = (0, 0) and e = (1, 1). In the context of the 2D index, component-wise
arithmetic operations are used.

Let Pk,l and Ik,l be a sequence of the Ritz–Galerkin projection operators and
a sequence of the interpolation operators from H1([0, 1]) into the space Vk,l,
respectively. Let Fk,l denote either Pk,l or Ik,l. The hierarchical surplus
operator δe is defined by Pflaum and Zhou [3] as

δeFk,lw := (−1)|e| ·
[ ∑

06β6e

(−1)|β|Fk+β1,l+β2
w

]
. (5)
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Lemma 5 (Error decomposition form).

Pn,nu− ucn =

n−1∑
k=0

n−1∑
l=n−k−1

δePk,lu , n > 1 .

Proof: Let m ∈ Z and 0 6 m 6 n − 1 , based on the definition of the
hierarchical surplus operator δe (equation (5)), we have

n−1∑
k=m

δePk,n−1−k+mu =

n−1∑
k=m

Pk+1,n−k+mu−

n−1∑
k=m

Pk+1,n−1−k+mu

−

n−1∑
k=m

Pk,n−k+mu+

n−1∑
k=m

Pk,n−1−k+mu

=

n∑
k=m+1

Pk,n−k+m+1u−

n∑
k=m+1

Pk,n−k+mu

−

n−1∑
k=m

Pk,n−k+mu+

n−1∑
k=m

Pk,n−1−k+mu

=

n−1∑
k=m+1

Pk,n−k+m+1u−

n−1∑
k=m+1

Pk,n−k+mu

−

n−1∑
k=m

Pk,n−k+mu+

n−1∑
k=m

Pk,n−1−k+mu

+ Pn,m+1u− Pn,mu .

Summing m from 0 to n− 1 ,

n−1∑
m=0

n−1∑
k=m

δePk,n−1−k+mu

=

[
n∑

k=m+1

Pk,n−k+m+1u−

n∑
k=m+1

Pk,n−k+mu

]
m=n−1
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−

[
n−1∑
k=m

Pk,n−k+mu+

n−1∑
k=m

Pk,n−1−k+mu

]
m=0

+

n−2∑
m=0

(Pn,m+1u− Pn,mu)

= Pn,nu−

n∑
k=0

Pk,n−ku+

n−1∑
k=0

Pk,n−1−ku .

On the other hand,

n−1∑
m=0

n−1∑
k=m

δePk,n−1−k+mu =

n−1∑
k=0

n−1∑
l=n−k−1

δePk,lu .

Thus, by the definition (3) of ucn, we finish the proof. ♠

Lemma 6. Assume u ∈ H3([0, 1]). If a1,a2 ∈ W1∞([0, 1]) and a3 ∈
L∞([0, 1]), then there exists w ∈ H2([0, 1]) such that

Pk,l (I− Ik,−)u = Pk,lw , with ‖w‖H2 / h2k+1‖u‖H3 .

Similarly, there exists v ∈ H2([0, 1]) such that

Pk,l (I− I−,l)u = Pk,lv , with ‖v‖H2 / h2l+1‖u‖H3 .

Proof: For any vk,l ∈ Vk,l ,

a
(
(I− Ik,−)u, vk,l

)
=

∫ 1
0

a1 [(I− Ik,−)u]
′
v′k,l + a2 [(I− Ik,−)u]

′
vk,l

+ a3 (I− Ik,−)uvk,l .

Let Tk,l be the set of all non-overlapping mesh intervals from Ωk,l,∫ 1
0

a1 [(I− Ik,−)u]
′
v′k,l =

∑
e∈Tk,l

∫
e

a1 [(I− Ik,−)u]
′
v′k,l ,
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where for each e, when y ∈ ∂e ,

v′k,l(y) := lim
x→y,x∈e

vk,l(x) − vk,l(y)

x− y
.

Since u ∈ H3([0, 1]), (I− Ik,−)u is sufficiently smooth on e, so

lim
x→y,x∈e(I− Ik,−)u(x) = (I− Ik,−)u(y) = 0 ,

and thus for any y ∈ ∂e ,(
a1 (I− Ik,−)uv

′
k,l

)
(y) = lim

x→y,x∈e
(
a1 (I− Ik,−)uv

′
k,l

)
(x) = 0 . (6)

Now on each e, we look at a1 · v′k,l as one function and (I− Ik,−)u as another
function. By integration by parts,∫

e

a1 · [(I− Ik,−)u]′ v′k,l = a1 (I− Ik,−)uv
′
k,l

∣∣
∂e
−

∫
e

a′
1 (I− Ik,−)uv

′
k,l

−

∫
e

a1 (I− Ik,−)uv
′′
k,l .

The equation (6) tells us the term a1 (I− Ik,−)uv
′
k,l

∣∣
∂e

= 0 . Moreover, since
vk,l ∈ Vk,l is piecewise linear on e, v′′k,l = 0 . Thus∫

e

a1 · [(I− Ik,−)u]′ v′k,l = −

∫
e

a′
1 (I− Ik,−)uv

′
k,l .

After summing up all e ∈ Tk,l ,∫ 1
0

a1 · [(I− Ik,−)u]′ v′k,l =
∑
e∈Tk,l

−

∫
e

a′
1 (I− Ik,−)uv

′
k,l = −

∫ 1
0

a′
1 (I− Ik,−)uv

′
k,l .

Furthermore,

a
(
(I− Ik,−)u, vk,l

)
=

∫ 1
0

−a′
1 (I− Ik,−)uv

′
k,l + a2 [(I− Ik,−)u]

′
vk,l
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+ a3 (I− Ik,−)uvk,l .

Since a1,a2 ∈ W1∞([0, 1]), by Lemma 2, there exist g1,g2 ∈ Vk,l with
g1
∣∣
[ 12 ,1]
≡ g2

∣∣
[ 12 ,1]
≡ 0 , such that, for all v ∈ Vk,l with ‖g1‖L2 / h2k+1‖u‖H3 ,

∫ 1
0

−a′
1 (I− Ik,−)uv

′
k,l = (g1, vk,l),∫ 1

0

a2 [(I− Ik,−)u]
′
vk,l = (g2, vk,l).

As a3 ∈ L∞([0, 1]),

‖a3 (I− Ik,−)u‖L2 / ‖ (I− Ik,−)u‖L2 6 h2k+1‖u‖H2 .

Hence, there exists a function g ∈ L2([0, 1]) such that

a
(
(I− Ik,−)u, vk,l

)
= (g, vk,l), for all v ∈ Vk,l with ‖g‖L2 / h2k+1‖u‖H3 .

On the other hand, by the Lax–Milgram theorem, there exists w ∈ H2([0, 1])
satisfying

a(w, v) = (g, v), for all v ∈ H1([0, 1]) with ‖w‖H2 / ‖g‖L2 .

Thus, a
(
(I− Ik,−)u, vk,l

)
= a(w, vk,l) with ‖w‖H2 / h2k+1‖u‖H3 . The proof

of the second part of Lemma 6 is similar and is omitted. ♠

Lemma 7. Let w ∈ H2([0, 1]). Then

‖δ0,1Pk,lw‖L2 / h2l+1 · ‖w‖H2 , ‖δ0,1Pk,lw‖H1 / hl+1 · ‖w‖H2 ,

and

‖δ1,0Pk,lw‖L2 / h2k+1 · ‖w‖H2 , ‖δ1,0Pk,lw‖H1 / hk+1 · ‖w‖H2 .
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Proof: Let g ∈ Vk,− be the solution of

a(v,g) =

∫
Ω

v · (Pk,− − Pk,l)w , for all v ∈ Vk,− .

By observing I−,lg ∈ Vk,l ,

‖(Pk,− − Pk,l)w‖2L2 = a
(
(Pk,− − Pk,l)w,g

)
= a

(
(Pk,− − Pk,l)w,g− I−,lg

)
/ ‖(Pk,− − Pk,l)w‖H1‖g− I−,lg‖H1

/ ‖(Pk,− − Pk,l)w‖H12−l−1‖g′‖H1 .

By elliptic regularity, ‖g‖H2 / ‖(Pk,− − Pk,l)w‖L2 , so

‖(Pk,− − Pk,l)w‖L2 / ‖(Pk,− − Pk,l)w‖H1 · 2−l−1.

Since

‖(Pk,− − Pk,l)w‖H1 = ‖(Pk,− − Pk,lPk,−)w‖H1

6 ‖(I− Ik,l)Pk,−w‖H1

/ 2−l−1‖w‖H2 ,

we obtain ‖(Pk,− − Pk,l)w‖L2 / 4−l−1‖w‖H2 . By the inequality

‖δ0,1Pk,lw‖ 6 ‖(Pk,l+1 − Pk,−)w‖+ ‖(Pk,− − Pk,l)w‖,

the proof of the first part of Lemma 7 is finished. The proof of the second
part is similar and is omitted. ♠

Lemma 8. Assume u ∈ H3([0, 1]). If a1 ∈ W1∞([0, 1]) and a2,a3 ∈
L∞([0, 1]), then

‖δePk,lu‖L2 / h2k+1h
2
l+1‖u‖H3 ,

‖δePk,lu‖H1 / hk+1hl+1 (hk+1 + hl+1) ‖u‖H3 .



3 One dimensional combination technique C654

Proof: We note that

δePk,lu = δe(Pk,l − Pk,lIk,l)u+ δePk,lIk,lu

= δePk,l(I− Ik,l)u+ δeIk,lu .

Since Ik,l = Ik,− ◦ I−,l and

I = Ik,l + (I− Ik,−) + (I− I−,l) − (I− Ik,−)(I− I−,l)

= Ik,l + (I− Ik,−) + (I− I−,l),

then

δePk,lu = δePk,l(I− Ik,−)u+ δePk,l(I− I−,l)u+ δeIk,lu

= δ1,0 ◦ δ0,1Pk,l(I− Ik,−)u+ δ1,0 ◦ δ0,1Pk,l(I− I−,l)u+ δeIk,lu .

Let ‖ · ‖ be the norm ‖ · ‖H1 or ‖ · ‖L2 . Then by the triangle inequality

‖δePk,lu‖ / max
k̃=k,k+1

‖δ0,1Pk̃,l(I− Ik̃,−)u‖+ max
l̃=l,l+1

‖δ1,0Pk,̃l(I− I−,̃l)u‖

+ ‖δeIk,lu‖,

where ‖δeIk,lu‖ = ‖Ik+1,l+1u − Ik+1,lu − Ik,l+1u + Ik,lu‖ = 0 . Furthermore,
by Lemma 6, there exist w1,w2 ∈ H1([0, 1])

⋂
H2([0, 1]) such that

Pk̃,l(I− Ik̃,−)u = Pk̃,lw1 , with ‖w1‖H2 / h2
k̃+1
‖u‖H3 ,

Pk,̃l(I− I−,̃l)u = Pk,̃lw2 , with ‖w2‖H2 / h2
l̃+1
‖u‖H3 .

We have

‖δePk,lu‖ / max
k̃=k,k+1

‖δ0,1Pk̃,lw1‖+ max
l̃=l,l+1

‖δ1,0Pk,̃lw2‖,

so, by using Lemma 7 and Lemma 6,

‖δePk,lu‖L2 / max
k̃=k,k+1

h2l+1‖w1‖H2 + max
l̃=l,l+1

h2k+1‖w2‖H2
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/ max
k̃=k,k+1

h2l+1h
2
k̃+1
‖u‖H3 + max

l̃=l,l+1
h2k+1h

2
l̃+1
‖u‖H3

/ h2k+1h
2
l+1‖u‖H3 ,

and

‖δePk,lu‖H1 / max
k̃=k,k+1

hl+1‖w1‖H2 + max
l̃=l,l+1

hk+1‖w2‖H2

/ max
k̃=k,k+1

hl+1h
2
k̃+1
‖u‖H3 + max

l̃=l,l+1
hk+1h

2
l̃+1
‖u‖H3

= hl+1h
2
k+1‖u‖H3 + hk+1h

2
l+1‖u‖H3 .

♠
Theorem 4 is a direct consequence of Lemma 5 and Lemma 8.

3.2 Numerical experiments

We report on numerical tests that support the 1D combination technique
error estimate presented in Theorem 4. We take the test problem −u′′(x) +
u′(x) + u(x) = x , x ∈ [0, 1] with u′(0) = u′(1) = 0 in all the numerical
experiments in this article. We note that the test problem ensures that
the conditions of Theorem 4 have been satisfied. By comparing the last two
columns of Table 1 and Table 2, one sees that the convergence rate of the
error in the L2 norm is O(4−nn), and the convergence rate of the error in the
H1 norm is O(2−n), which is exactly what Theorem 4 predicts.

4 Parallel complexity of 1D combination

technique

The number of basic operations to calculate Pk,l ∈ Vk,l is 84 · 2k + 83 · 2l +
115+C , where C denotes the number of basic operations involved in solving a
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Table 1: ‖Pn,nu− ucn‖L2

n ‖Pn,nu− ucn‖L2 ratio ratio of 4−nn
1 5.9e−05
2 2.9e−05 2.03 2.00
3 1.1e−05 2.66 2.67
4 3.7e−06 2.95 3.00
5 1.2e−06 3.00 3.20
6 3.5e−07 3.48 3.33
7 1.0e−07 3.52 3.43
8 2.9e−08 3.45 3.50
9 8.0e−09 3.66 3.55
10 2.1e−09 3.70 3.60
11 5.8e−10 3.72 3.64
12 1.7e−10 3.34 3.67

Table 2: ‖Pn,nu− ucn‖H1

n ‖Pn,nu− ucn‖H1 ratio ratio of 2−n

1 4.1e−04
2 2.7e−04 1.48 2

3 1.4e−04 1.88 2

4 8.5e−05 1.73 2

5 6.5e−05 1.30 2

6 2.2e−05 2.85 2

7 9.8e−06 2.33 2

8 4.8e−06 2.01 2

9 2.1e−06 2.29 2

10 1.2e−06 1.73 2

11 7.3e−07 1.67 2

12 4.0e−07 1.83 2
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tridiagonal linear system. Hence, the number of basic operations to calculate
Pn,n ∈ Vn,n is 167 · 2n + 115 + C and the number of basic operations to
calculate the 1D combination technique is∑
k+l=n

(
84 · 2k + 83 · 2l + 115+ C

)
+

∑
k+l=n−1

(
84 · 2k + 83 · 2l + 115+ C

)
.(7)

Equation (7) indicates that the number of basic operations involved in the 1D
combination technique is larger than the number of basic operations involved
in the full grid approximation. However, from a parallel coding point of view,
there are 2n+1 independent problems of the maximum size 84 ·2n+198+C .
Thus the optimal parallel complexity is 84 · 2n + 198 + C . This reveals
the best possible speedup of the 1D combination technique is 2 although
2n+ 1 processors are required.

To increase the best possible speedup of the 1D combination technique, one
could initially divide the domain interval [0, 1] into more subintervals. This
will result in variants of the 1D combination technique. Figures 1 and 2
display numerical results for the parallel implementation.

The 1D combination technique and its variants create a method to have
parallel computing in one dimensional cases. The tensor product of the 1D
combination technique can be used for multi-dimensional cases. For high
dimensional cases, the 1D combination technique can be used together with
the sparse grids technique [2, 3] to increase the parallelism and reduce the
parallel complexity.

5 Conclusion

The 1D combination technique is related to Domain Decomposition and
Multi-parameter extrapolation [5]. Domain Decomposition methods combine
approximate solutions in different sub-domains while Combination methods
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combine approximate solutions on different grids that are based on the entire
domain.

Looking for a variant of the 1D combination technique which improves
parallelism and is more accurate is left for future research. Future work will
also include the extension into the 2D case and therefore the multidimensional
case by using tensor products.
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[5] U. Rüde and A. Zhou. Multi-parameter extrapolation methods for
boundary integral equaitons. Advances in Computational Mathematics,
9:173–190, 1998.
http://www.springerlink.com/content/m31l311t32345607/ C657

Author address

1. Y. Fang, Mathematical Sciences Institute, The Australian National
University, ACT, Australia.
mailto:yuan.fang@anu.edu.au

http://www.springerlink.com/content/m31l311t32345607/
mailto:yuan.fang@anu.edu.au

	Introduction
	Preliminaries
	One dimensional combination technique
	Proof of Theorem 4
	Numerical experiments

	Parallel complexity of 1D combination technique
	Conclusion
	References

