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Abstract

We study Krylov subspace methods for approximating the matrix-
function vector product ϕ(tA)b where ϕ(z) = [exp(z) − 1]/z. This
product arises in the numerical integration of large stiff systems of
differential equations by the Exponential Euler Method, where A is
the Jacobian matrix of the system. Recently, this method has found
application in the simulation of transport phenomena in porous media
within mathematical models of wood drying and groundwater flow. We
develop an a posteriori upper bound on the Krylov subspace approxi-
mation error and provide a new interpretation of a previously published
error estimate. This leads to an alternative Krylov approximation to
ϕ(tA)b, the so-called Harmonic Ritz approximant, which we find does
not exhibit oscillatory behaviour of the residual error.
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1 Introduction

Mathematical models for simulating transport phenomena in porous media
take the form

∂ψ`

∂t
+∇ · q` = 0 on Ω ,

where ` denotes the conserved quantity, with appropriate conditions defined
on the boundary ∂Ω. For example, a three equation model representing the
conservation of water, energy and air is used for modelling the drying of
wood [9]. For such problems, the Finite Volume Method (fvm) has been used
with great success to solve the governing set of equations. In two dimensions,
the domain Ω is tessellated with triangles and finite volumes are constructed
around every node (vertex) in the mesh. For the three equation wood drying
model and a mesh comprising of Np nodes, the fvm leads to a system of
differential equations of the form [2]

du

dt
= g(u), u(0) = u0 , (1)
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where u ∈ R3Np contains the unknown solution values, arranged in triplets,
at each node in the mesh. Recently [2], we found that the Exponential Euler
Method (eem) is effective for numerically integrating the resulting differential
equation system (1). At each step of the integration process, the eem solves
the linearised system

du

dt
= g(un) + J(un)(u− un), u(tn) = un ,

exactly to obtain the approximate time stepping formula

un+1 = un + τnϕ [τnJ(un)]g(un),

where ϕ(z) = [exp(z) − 1]/z , τn = tn+1 − tn is the integration step, and J is
the Jacobian matrix of g [1, 2, 7, 8]. This integration strategy is by no means
new but it was not until recently [1] that a stepsize control algorithm using
local error estimation was provided for the problems of groundwater flow [1]
and wood drying [2].

This article focuses on the computation of ϕ(tA)b for the large sparse
non-symmetric matrices A encountered in the aforementioned problems;
the eigenvalues of these matrices typically have negative real components.
Approximations to ϕ(tA)b are extracted from the m-dimensional Krylov
subspace

Km(A,b) = span
{
b,Ab, . . . ,Am−1b

}
⊆ RN, A ∈ RN×N,

via Arnoldi’s method, which produces the decomposition

AVm = VmHm + βmvm+1e
T
m , b = β0v1 , (2)

where the columns v1, v2, . . . , vm of Vm ∈ RN×m form an orthonormal basis
for Km(A,b), Hm = VTmAVm (since VTmvm+1 = 0), β0 = ‖b‖2 , βm = ‖(I −
VmV

T
m)Avm‖2 and em is the mth column of the m × m identity matrix.

The Krylov approximation reduces the evaluation of ϕ to the small m×m
matrix Hm [1, 2, 7, 8]:

ϕ(tA)b ≈ β0Vmϕ(tHm)e1 . (3)
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In practice, beginning at m = 1 , the dimension of the Krylov subspace is
increased and the procedure terminated when the approximation (3) is deemed
sufficiently accurate. Existing criteria for terminating this approximation
procedure are based on the true error [7]:

εm = ϕ(tA)b− β0Vmϕ(tHm)e1 . (4)

Since ϕ(tA)b is unknown, this true error (4) must be estimated or bounded.
One error estimate due to Hochbruck, Lubich and Selhofer [7] performs
reasonably well in simulation codes [1, 2]. In Section 2.1, we attempt to
improve upon this error estimate by developing an upper bound on the 2-
norm of the true error (4) for those matrices encountered in wood drying and
groundwater flow applications.

In Section 2.2, we provide a new interpretation of the error estimate of
Hochbruck et al. [7] by introducing the concept of a “differential equation
residual”. This concept relies on the fact that the matrix function tϕ(tA)b
exactly satisfies a suitably defined differential equation. This notion of a
residual leads to an alternative Krylov approximation to ϕ(tA)b, which
we derive by extending methods developed for linear systems that enforce
orthogonality of the residual vector and a specified m-dimensional subspace
of constraints (see Section 2.3).

2 Krylov approximation to ϕ(tA)b

2.1 An a posteriori error bound

Using the Cauchy integral formula, the error of the mth Krylov approxima-
tion (4) is represented as [7]

εm =
1

2πi

∮
Γ

ϕ(z)(zI− tA)−1rm(z)dz , (5)
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Figure 1: Contour of integration Γ = Γ1∪Γ2 used in the error bound derivation.
We take Γ1 : z = α + iy , R sin(θ2) 6 y 6 R sin(θ1) and Γ2 : z = Reiθ,
θ1 6 θ 6 θ2 where θ1 = arccos(α/R) and θ2 = 2π− arccos(α/R).

where the contour of integration Γ encloses the eigenvalues of both tA and tHm,
and where

rm(z) = b− (zI− tA)xm = tβ0βme
T
m(zI− tHm)

−1e1vm+1 (6)

is the residual error associated with the Full Orthogonalisation Method (fom)
approximation xm = β0Vm(zI − tHm)

−1e1 to the solution of the z-shifted
linear system (zI− tA)x = b [7].

Our interest concerns matrices tA whose eigenvalues have real components
less than some positive value α. Consequently, the contour of integration Γ is
chosen as the boundary of the region formed by the intersection of the disk
|z| 6 R with the half-plane Re(z) 6 α . Taking the limit as R tends to infinity
(to enclose all eigenvalues with real components less than α), produces the
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following Cauchy integral representation

ϕ(λ) = lim
R→∞ (I1 + I2) , Ij =

1

2πi

∫
Γj

ϕ(z)

z− λ
dz , j = 1, 2 ,

for Re(λ) < α . The second integral in this representation is bounded above:

|I2| =

∣∣∣∣ 12π
∫ θ2
θ1

ϕ(Reiθ)

Reiθ − λ
Reiθdθ

∣∣∣∣ 6 1

2π

∫ θ2
θ1

eR cos θ + 1

R− |λ|
dθ

6
eα + 1

2π(R− |λ|)
(θ2 − θ1) ,

where we use R cos θ 6 α for θ1 6 θ 6 θ2 . Taking the limit as R approaches
infinity we obtain |limR→∞ I2| = limR→∞ |I2| = 0 . The significance of this
result is that the error representation (5) can be expressed as

εm =
1

2π

∫∞
−∞ϕ(α+ iy) [(α+ iy)I− tA]

−1
rm(α+ iy)dy . (7)

In the following proposition, we provide an upper bound on the 2-norm of εm
by considering this integral representation.

Proposition 1. Suppose A = PDP−1 and Hm = YmΛmY
−1
m are diagonalisable

with eigenvalues λj, j = 1, . . . ,N , and µk, k = 1, . . . ,m . Furthermore,
take λmax to be the maximum real component of the eigenvalues of A. Then
for α positive and α > tλmax , the 2-norm of the Krylov approximation error
εm = ϕ(tA)b− β0Vmϕ(tHm)e1 satisfies

‖εm‖2 6 Cm(α) ‖rm(α)‖2 , (8)

where

Cm(α) =
κ2(P)(e

α + 1)

2α1/2(α− tλmax)1/2

m∏
k=1

[
1+

(
t Im(µk)

α− tRe(µk)

)2]1/2
, (9)

κ2(P) is the 2-norm condition number of P, and rm(α) is the residual error
associated with the fom approximation to (αI− tA)−1b.
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Proof: Taking norms of (7) gives

‖εm‖2 6
1

2π

∫∞
−∞ |ϕ(α+ iy)|

∥∥((α+ iy)I− tA)−1
∥∥
2
‖rm(α+ iy)‖2 dy .

We make use of the results

|ϕ(α+ iy)| 6
eα + 1

|α+ iy|
,∥∥((α+ iy)I− tA)−1

∥∥
2
6 κ2(P) max

j=1,...,N

1

|(α+ iy) − tλj|
,

and

‖rm(α+ iy)‖2 =
m∏
k=1

|α− tµk|

|α+ iy− tµk|
‖rm(α)‖2 ,

6
m∏
k=1

[
1+

(
t Im(µk)

α− tRe(µk)

)2]1/2
‖rm(α)‖2 .

The third result follows from expressing eTm(zI− tHm)
−1e1 in the definition

of the residual vector (6) in adjoint-determinant form for both z = α + iy
and z = α and then taking norms. Using these results one obtains

‖εm‖2 6 κ2(P) (eα + 1)
m∏
k=1

[
1+

(
t Im(µk)

α− tRe(µk)

)2]1/2
× max
j=1,...,N

∫∞
−∞

1

|α+ iy|

1

|(α+ iy) − tλj|
dy ‖rm(α)‖2 .

The integral is then bounded above using the Cauchy–Schwarz Inequality:

I = max
j=1,...,N

∫∞
−∞

1

|α+ iy|

1

|(α+ iy) − tλj|
dy

6 max
j=1,...,N

(∫∞
−∞

1

|α+ iy|
2
dy

)1/2(∫∞
−∞

1

|α+ iy− tλj|
2
dy

)1/2
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= max
j=1,...,N

(π
α

)1/2( π

α− tRe(λj)

)1/2
.

♠

Remark 2. In the case when the matrix is not diagonalisable, one must use
the Jordan canonical form [5]. This will be the subject of future research.

Proposition 1 provides an upper bound that can be used to terminate the
approximation procedure. However, it requires knowledge of the values of
κ2(P) and λmax. A practical error estimate based on this bound is obtained by
estimating these values using the projected matrix Hm, via the approximations
κ2(P) ≈ κ2(Ym) and λmax ≈ µmax = maxk=1,...,m Re(µk). This produces the

estimate Cm(α) ≈ C̃m(α) for use in (8) where

C̃m(α) =
κ2(Ym)(e

α + 1)

2α1/2(α− tµmax)1/2

m∏
k=1

[
1+

(
t Im(µk)

α− tRe(µk)

)2]1/2
. (10)

2.2 New interpretation of error estimate

Firstly, we briefly outline the estimate of the true error (4) given by Hochbruck
et al. [7]. Consider the Cauchy integral representation (5), expressed as

εm =
1

2πi

∫
Γ

ϕ(z)εm(z)dz ,

where εm(z) = x−xm is the true error associated with the fom approximation
xm = β0Vm(zI − tHm)

−1e1 to the solution of the z-shifted linear system
(zI−tA)x = b . Hochbruck et al. [7] argued that since the termination of fom
for this linear system is typically based on the residual error rm(z) rather than
the true error εm(z), one substitutes for εm(z) the error indicator rm(z) (6)
giving

εm ≈
1

2πi

∫
Γ

ϕ(z)rm(z)dz = tβ0βme
T
mϕ(tHm)e1vm+1 .
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We now provide a new interpretation of the resulting error estimate by
introducing the concept of a differential equation residual. This relies on the
fact that the function x(t) = tϕ(tA)b = A−1(etA − I)b satisfies

dx

dt
= Ax+ b , x(0) = 0 . (11)

We replace ϕ(tA)b by its Krylov approximation (3) and hence define the
approximation xm(t) = tβ0Vmϕ(tHm)e1 = β0VmH

−1
m (etHm − I)e1 . One way

to measure how well xm approximates x (and hence determine the accuracy
of the Krylov approximation (3)) is to measure how well xm satisfies the
differential equation (11). We measure this through the “differential equation
residual”, defined as

ρm = b+Axm −
dxm

dt
, (12)

where ρm = 0 when xm = x and one assumes a small value of ‖ρm‖ means
xm is a good approximation to x. A similar error interpretation was given
for the matrix exponential by Celledoni and Moret [4]. Making use of the
Arnoldi decomposition (2) and noting that b = β0Vme1, one obtains

ρm = b+ tβ0AVmϕ(tHm)e1 − β0Vme
tHme1

= b+ tβ0AVmϕ(tHm)e1 − β0Vm(tHmϕ(tHm) + Im)e1

= tβ0 (AVm − VmHm)ϕ(tHm)e1

= tβ0βme
T
mϕ(tHm)e1vm+1 , (13)

as a measure of the accuracy of the approximation (3), which is identical
to the error estimate proposed by Hochbruck et al. [7]. As we see in the
next section, this error interpretation can be used to construct an alternative
Krylov approximant to ϕ(tA)b.

2.3 Harmonic Ritz approximation

For linear systems, Krylov projection methods extract an approximate solution
from Km by forcing the residual vector to be orthogonal to an m-dimensional
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subspace of constraints Wm ⊆ RN. We extend this idea to the “differential
equation residual” introduced in Section 2.2 to produce an alternative Krylov
approximation to ϕ(tA)b.

First, each vector xm ∈ Km is expressible in the form xm = Vmym where
ym ∈ Rm. This produces the general form of the residual vector (12)

ρm = b+AVmym − Vm
dym

dt
,

where we assume ym is a function of t.

To produce the fom approximate solution of a linear system, one chooses
Wm = Km . Interestingly, forcing ρm to be orthogonal to Km, that is VTmρm =
0 , we obtain

VTmb+ (VTmAVm)ym − (VTmVm)
dym

dt
= 0 ,

β0e1 +Hmym −
dym

dt
= 0 ,

due to the columns of Vm forming an orthonormal basis. The solution of this
differential equation is ym = tβ0ϕ(tHm)e1 and hence xm = tβ0Vmϕ(tHm)e1 ,
which reproduces the Krylov approximation defined by (3).

Another Krylov projection method for linear systems, the Generalised Minimal
Residual Method (gmres), is often preferred over fom since the resulting
approximate solution minimises the 2-norm of the residual vector over Km.
For linear systems, this choice of the constraint space Wm is well known;
however, the choice that minimises the 2-norm of ρm is not as straightforward.

As a result, we take Wm = AKm , which produces the gmres approximate
solution to the linear system Ax = b . Forcing ρm to be orthogonal to AKm

requires

(AVm)
T

(
b+AVmym − Vm

dym

dt

)
= 0 .
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Using the Arnoldi decomposition (2),

(VmHm+βmvm+1e
T
m)

T

[
β0Vme1 +

(
VmHm + βmvm+1e

T
m

)
ym − Vm

dym

dt

]
= 0 ,

and given that vm+1 is orthogonal to each column of Vm, we obtain

β0H
T
me1 +

(
HTmHm + β2meme

T
m

)
ym −HTm

dym

dt
= 0 .

Assuming HTm is invertible and denoting H−T
m = (HTm)

−1 one obtains

β0e1 +
(
Hm + β2mH

−T
m eme

T
m

)
ym −

dym

dt
= 0 .

The solution of this differential equation is ym = tβ0ϕ(tHm)e1 where Hm =
Hm + β2mH

−T
m eme

T
m and hence xm = tβ0Vmϕ(tHm)e1 . This defines the

alternative Krylov approximation

ϕ(tA)b ≈ β0Vmϕ(tHm)e1 , Hm = Hm + β2mfme
T
m , (14)

where the evaluation of ϕ occurs at a matrix given by a rank one update on Hm
and fm = H−T

m em . We refer to the case fm = H−T
m em as the harmonic Ritz

approximant since the eigenvalues of Hm are the harmonic Ritz values of A
with respect to the subspace Km. A generalised version of (14) was derived
by Hochbruck and Hochstenbach [6] using a different strategy. For (14), the
“differential equation residual” is defined as

ρm = b+ tβ0AVmϕ(tHm)e1 − β0Vme
tHme1 ,

= b+ tβ0AVmϕ(tHm)e1 − β0Vm(tHmϕ(tHm) + Im)e1 ,

= tβ0 (AVm − VmHm)ϕ(tHm)e1 ,

= tβ0βme
T
mϕ(tHm)e1 [vm+1 − βmVmfm] . (15)

Setting fm = 0 in Equations (14) and (15) produces the standard Krylov
approximation, which we refer to in the next section as the Ritz approximant.
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3 Numerical experiments

All numerical experiments were conducted in Matlab Version 7.1 based
on a single representative matrix A = J(un) of size 1899× 1899 and vector
b = g(un) extracted from a low temperature, wood drying, simulation [2, 3].
The real and imaginary eigenvalue components of A range from −102 to
−7.4× 10−5 and −5.0× 10−4 to 5.0× 10−4, respectively.

First, we assess the performance of the error bound given in (8) and (9)
of Section 2.1 and the error estimate defined by (10) for a time step of
t = 200 (Figure 2). Recall that the error estimate is obtained by using the
approximations κ2(P) ≈ κ2(Ym) and λmax = µmax ≈ maxk=1,...,m Re(µk) in
the bound. In these results, α > 0 can be freely chosen. We find increasing
the value of α provides a sharper bound for large m but a poorer bound for
small m. This trade-off occurs due to two reasons: the appearance of the
term exp(α) in the constants Cm(α) and C̃m(α); and the faster convergence
of the linear system residual rm(α) for larger α. However, for both the error
bound and error estimate, a value of α could not be found that improved
upon the “differential equation residual” error (estimate of Hochbruck et
al. [7]).

We now assess the performance of both the Ritz and harmonic Ritz ap-
proximants to ϕ(tA)b, defined in (14) with fm = 0 and fm = H−T

m em re-
spectively (Figure 3). Eigenvalue decompositions are used to compute both
ϕ(tHm) and ϕ(tHm). Our initial experiments discovered that for some values
of m, a single positive harmonic Ritz value was produced that eroded the
accuracy of the given harmonic Ritz approximant. We found it necessary to
discard these eigenvalues by approximating ϕ(tHm) by

ϕ(tHm) ≈
∑

Re(θj)<0

ϕ(tθj)yjz
T
j , HmYm = ΘmYm ,

where yj is the jth column of Ym such that (θj,yj) is an eigenpair of Hm and
zTj is the jth row of Y−1

m . Time steps of t = 50 and t = 200 (slower convergence)
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Figure 2: Accuracy of error estimates and error bounds to εm = ϕ(tA)b−
β0Vmϕ(tHm)e1 for a time step of t = 200 . Comparison of the “differential
equation residual” (13), error bound (given in Equations (8) and (9)) and
error estimate defined by (10).

were both tested. From the plot, the behaviour of the “differential equation
residual” error for the harmonic Ritz approximant is more favourable than the
standard Ritz approximant. The former eliminates the oscillation, providing
a smooth monotone decreasing residual error.

4 Conclusions

We derived an a posteriori upper bound on the Krylov subspace approxima-
tion error for the matrix-function vector product ϕ(tA)b. This error bound
provides a mechanism through which the quality of the Krylov approximant
can be assessed as the dimension of the subspace is increased. We also
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Figure 3: Accuracy of Krylov approximants to ϕ(tA)b. Comparison of the
“differential equation residual” error (15) for the Ritz (fm = 0) and Harmonic
Ritz (fm = H−T

m em) approximants for two values of the time step t.

introduced the concept of a “differential equation residual” and used this
definition to explain why a previously defined error estimate performs ade-
quately in predicting when to terminate the Krylov subspace approximation
procedure. This finding identifies an alternative Krylov subspace approxima-
tion to ϕ(tA)b that provides “smoother” residual errors than the standard
approximation. We believe this alternative approximation has potential and
our intention is to utilise this result in future versions of our Exponential
Euler Method (eem) simulation code for further case studies in modelling
transport processes in porous media.
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