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Drug diffusion from polymeric delivery devices:
a problem with two moving boundaries
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Abstract

An existing model for solvent penetration and drug release from
a spherically shaped polymeric drug delivery device is revisited. The
model has two moving boundaries, one that describes the interface
between the glassy and rubbery states of the polymer, and another
that defines the interface between the polymer ball and the pool
of solvent. The model is extended so that the nonlinear diffusion
coefficient of drug explicitly depends on the concentration of solvent,
and the resulting equations are solved numerically using a front fixing
transformation together with a finite difference spatial discretisation
and the method of lines. We present evidence that our scheme is much
more accurate than a previous scheme. Asymptotic results in the small
time limit are presented, which show how the use of a kinetic law
as a boundary condition on the innermost moving boundary dictates
qualitative behaviour, the scalings being very different to the similar
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moving boundary problem that arises from modelling the melting of
an ice ball. The implication is that the model considered here exhibits
what is referred to as non-Fickian or Case II diffusion which, together
with the initially constant rate of drug release, has certain appeal from
a pharmaceutical perspective.
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1 Introduction

The pharmaceutical industry extensively makes use of polymeric materials
to construct controlled drug release devices. Of interest here are hydrophilic
polymers (for example, certain hydrogels) that are characterised by swelling
and enhanced drug diffusion when in contact with a thermodynamically
compatible solvent. In particular, we are concerned with polymers that exist
in a hard glassy state when they are stored, during which time a particular
drug is distributed evenly throughout (such a drug may be dissolved in the
polymer when it is manufactured). Furthermore, when such a polymer is
placed in an aqueous environment the solvent starts to penetrate into the
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polymer and, as a result of the subsequent disentanglement of the affected
macromolecular polymer chains, the hard glassy state transforms into a soft
rubbery state. There is an increased volume of polymer in the rubbery state
and, importantly, the drug mobility in the rubbery state is significantly higher
than in the glassy state. We are not concerned with a particular polymer,
drug or solvent with the above properties; however, the parameter values used
in this paper are taken from studies [1, 8, 10, 11] that involve the polymers
polyvinyl alcohol (pva) and hydroxypropyl methylcellulose (hpmc) and the
solvents water, phosphate buffer and hydrogen chloride. The drugs used
in these particular studies include chlorpheniramine maleate, theophylline,
buflomedil pyridoxal phosphate and sodium diclofenac.

Let the concentration of solvent in a polymer ball be denoted by U(R, T)
and the concentration of drug by V(R, T), where R is the radial distance and
T is time. The problem we are concerned with in the present study was
proposed by Cohen and Erneux [3] in one spatial dimension and then treated
by Lin and Peng [6] for the spherical geometry of interest here, except that
we extend the model to include nonlinear diffusion. The model is roughly
a combination of Higuchi’s model [4] to describe the transport of the drug
and a moving boundary problem for the penetration of solvent as described
by Astarita and Sarti [1]. There are two moving boundaries in the problem,
with locations denoted by R = S1(T) and R = S2(T); the first is the interface
between the rubbery and glassy regions in the polymer while the second is the
outer boundary of the polymer ball. The rubbery-glassy interface R = S1(T)
moves towards the centre of the sphere as the solvent penetrates the polymer,
while the outer boundary R = S2(T) moves outwards as the polymer swells.
Whereas we assume that no drug is released from the inner glassy core of
the polymer ball, there is diffusion of drug from the outer rubbery shell
S1(T) < R < S2(T) with a diffusion coefficient that is an increasing function
of the solvent concentration U.

We scale the problem with the dimensionless variables

r =
R

S1(0)
, t =

DsT

S21(0)
, v =

V

Vinit

, u =
U−U∗

U0 −U∗ , si(t) =
Si(T)

S1(0)
,
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where Ds is the diffusivity of the solvent, Vinit is the initial concentration of
drug in the polymer, U0 is the equilibrium solvent concentration at the surface
of the spherical pellet, U∗ is the threshold value of the solvent concentration to
transform the polymer from the glassy state to the rubbery state, and i takes
the values 1 or 2. As a result, the dimensionless problem for the diffusion of
solvent in the rubbery region is

∂u

∂t
=
1

r2
∂

∂r

(
r2
∂u

∂r

)
in s1(t) < r < s2(t), (1)

u = 1 at r = s2(t), (2)

∂u

∂r
= −(u+ λ)

ds1

dt
at r = s1(t), (3)

un = −µ
ds1

dt
at r = s1(t), (4)

with

s32(t) − 1 = 3νm

∫ s2(t)
s1(t)

[
1−

1− u

λ+ 1

]
r2dr. (5)

Physically, (1) describes linear diffusion of solvent in the rubbery region
s1(t) < r < s2(t), while (2) states that the concentration of solvent on the
outer boundary is equal to the concentration in the body of solvent surround-
ing the polymer ball (which, in dimensional variables, is the equilibrium
value U0). The moving boundary condition (3) is a mass balance, while (4)
describes a kinetic law relating the speed of the rubbery-glassy interface to
the level of solvent concentration above the threshold value U∗. The integral
relationship (5) is another mass balance that relates the volume increase to
the molar volume of the solvent.

The dimensionless problem for the diffusion of the drug is

∂v

∂t
=
1

r2
∂

∂r

(
r2D(u)

∂v

∂r

)
in s1(t) < r < s2(t), (6)

v = 0 at r = s2(t), (7)
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D(u)
∂v

∂r
= (1− v)

ds1

dt
at r = s1(t), (8)

where the nonlinear diffusion coefficient is

D(u) = δe−β(1−u). (9)

Once the rubbery-glassy interface r = s1(t) reaches the centre of the ball, the
drug release continues with (3)–(4) replaced with ∂u/∂r = 0 on r = 0 and
(8) replaced with ∂v/∂r = 0 on r = 0 . Physically, (6) is a diffusion equation
for the drug with a nonlinear diffusion coefficient D(u) that is an increasing
function of the concentration of solvent. The drug concentration is assumed
to vanish on the surface of polymer ball, leading to (7). Finally, (8) describes
the mass balance of drug at the rubbery-glassy interface.

There are six dimensionless parameters in (1)–(9): δ = Dd/Ds , the ratio
of the diffusion coefficient of drug at the outer boundary to the (constant)
diffusion coefficient of solvent; β > 0 , a measure of the nonlinearity in the
dependence of diffusivity of drug on concentration of solvent; 0 6 νm < 1 ,
the product of U0 with the molar volume of solvent when it has penetrated
into the polymer; λ = U∗/(U0 − U

∗), a control parameter that increases
as the difference between the equilibrium value and the threshold value of
the solvent concentration decreases; µ = Dk−11 (U0 −U

∗)−n/S2(0), a kinetic
parameter that is determined by fitting the empirical law (4) to experiments;
and n, an exponent also found by the same experimental test.

In this model the processes of solvent and drug diffusion are only coupled in
one direction, in the sense that the double moving boundary problem (1)–(5)
is solved for u(r, t), s1(t) and s2(t) without reference to (6)–(9); however (6)–
(9) requires the solutions for u(r, t), s1(t) and s2(t) as inputs. The problem (1)–
(5) also describes a one phase Stefan problem for melting an ice ball, with the
unusual boundary condition (4) modelling the effect of kinetic undercooling
on melting temperature (with µ = 0 , the problem (1)–(5) resembles a more
classical Stefan problem with a constant melting temperature).

As mentioned above, (1)–(9) with β = 0 was treated by Lin and Peng [6];
the problem with νm = 0 (no swelling) was also studied recently by McCue
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et al. [7]. We revisit this problem and Section 2 generates numerical solutions
using a front fixing transformation and finite differences. We argue that our
method is much more accurate than that used by Lin and Peng [6] and point
out some instances in which they display solutions that are not physically
realistic. Section 3 summarises a small time analysis that demonstrates
the role of the kinetic parameter µ in determining the speed of the moving
boundaries and the early rate of drug release. Some further numerical results
are discussed in Section 4.

2 Numerical method

The model of the swelling controlled release system is a non-linear moving
boundary problem with two moving boundaries, and is more difficult to treat
numerically than standard linear diffusion problems. The method we use
to solve this problem numerically is to first transform the moving boundary
problem into a fixed boundary problem via a standard ‘front fixing’ method
which maintains the nature of the original moving boundary problem, but
results in an extra term appearing in the transformed governing equation.
This extra term is of convection type with no physical significance to the
swelling controlled release system.

By applying the front fixing transformation

ξ =
r− s1
s2 − s1

(10)

to the problem (1)–(9) we obtain

(s2 − s1)
2∂v

∂t
= D(u)

{
∂2v

∂ξ2
+

2(s2 − s1)

[s1 + (s2 − s1)ξ]

∂v

∂ξ

}
+ βD(u)

∂u

∂ξ

∂v

∂ξ

+ (s2 − s1)

[
(1− ξ)

ds1

dt
+ ξ

ds2

dt

]
∂v

∂ξ
in 0 < ξ < 1 , (11)

v = 0 at ξ = 1 , (12)
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D(u)
∂v

∂ξ
= (1− v)(s2 − s1)

ds1

dt
at ξ = 0 , (13)

(s2 − s1)
2∂u

∂t
=
∂2u

∂ξ2
+

2(s2 − s1)

[s1 + (s2 − s1)ξ]

∂u

∂ξ

+ (s2 − s1)

[
(1− ξ)

ds1

dt
+ ξ

ds2

dt

]
∂u

∂ξ
in 0 < ξ < 1 , (14)

u = 1 at ξ = 1 , (15)

∂u

∂ξ
= −(u+ λ)(s2 − s1)

ds1

dt
at ξ = 0 , (16)

un = −µ
ds1

dt
at ξ = 0 , (17)

with

s32 = 1+ νm
λ

λ+ 1
(s32 − s

3
1) +

3νm

λ+ 1

∫ 1
0

u [s1 + (s2 − s1)ξ]
2
(s2 − s1)dξ . (18)

The idea behind using (10) is that (11)–(18) now applies on the fixed domain
0 6 ξ 6 1 , with ξ = 0 and ξ = 1 corresponding to r = s1(t) and r = s2(t),
respectively.

The numerical method we use to address the problem (11)–(18) is the Method
of Lines with finite difference spatial discretisation. The governing equa-
tions (11) and (14) are discretised in space by using the finite difference
method to form ordinary differential equations (odes) at each internal node
and the boundary node ξ = 0 . The solutions for drug and solvent concen-
tration at the boundary node ξ = 1 are known due to the corresponding
Dirichlet conditions there. In particular, we utilise the second order central
difference formulae

∂u

∂ξ

∣∣∣∣
ξ=ξi

≈ ui+1 − ui−1
2∆ξ

,
∂2u

∂ξ2

∣∣∣∣
ξ=ξi

≈ ui+1 − 2ui + ui−1
(∆ξ)2

,

except at the boundary node ξ = 0 where we employ the first order forward
difference formula and the second order central difference formula with a
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ghost node. The resultant system of odes is solved numerically with the
Matlab built-in ode/daes solver ode15i, which solves fully implicit odes
by employing variable order and variable stepsize numerical differentiation
formulae. The solver chooses both the order of the scheme and time stepsize
adaptively to meet local error tolerances, so we are unable to specify the
exact time steps used for each run. Further, it is necessary to use the small
time solution described in Section 3 as an initial condition for the scheme, as
the inner and outer moving boundaries coincide at t = 0 .

The last issue relates to the integral in (18) which is subtle and not straight-
forward to discretise by the finite difference spatial discretisation. There
are two approaches to form a differential algebraic equation for (18). One
approach utilises existing formulae for numerical integration. The other
approach, which we employ, is to derive the explicit form of the speed of
the volume expansion front s2(t) based on the idea used by Radu et al. [9].
We differentiate both sides of equation (5) and apply the Leibniz integral
rule for differentiating a definite integral whose limits are a function of the
differential variable. We then transform the independent variable r to the
new independent variable ξ given by the front fixing transformation (10). As
a result, we find that (18) becomes

ds2

dt
=

1

s2 − s1

νm

1− νm

1

λ+ 1

∂u

∂ξ

∣∣∣∣
ξ=1

,

which is discretised using a backward difference formula.

3 Small time analysis

We investigate the small time behaviour of the problem (1)–(9) by applying
the following expansions:

u ∼
1

r

{
u0(ξ) + u1(ξ)(1− s1) + u2(ξ)(1− s1)

2
}

, (19)
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v ∼
1

r

{
v0(ξ) + v1(ξ)(1− s1) + v2(ξ)(1− s1)

2
}

, (20)

ds1

dt
∼ g0 + g1(1− s1) + g2(1− s1)

2, (21)

s2 ∼ 1+ h1(1− s1) + h2(1− s1)
2, (22)

as s1 → 1− to (1)–(9), where ξ is given by (10). The ansatz (19)–(22) is
anticipated by adapting previous studies [1, 2, 7] to allow for the second
moving boundary and the presence of drug. Substituting (19)–(22) into (1)–
(9) provides differential equations for the ui and vi which are solved to give
(in original variables r and t)

u ∼ 1−
1+ λ

µ

(
1− r

r

)
−

νm(1+ λ)

2µ2(1− νm)

(1− r)2

r
, (23)

v ∼
1− r

δµr

(
1+

νm(1− r)

2δµ(1− νm)
+
β(1+ λ)(1− r)

2µ

)
, (24)

s2 ∼ 1+
νm

1− νm

t

µ
−
νm {1+ [n(1+ λ) + 2µ] (1− νm)} t

2

2µ3(1− νm)3
, (25)

s1 ∼ 1−
t

µ
+

n(1+ λ)

2µ3(1− νm)
t2, (26)

as t → 0+. Terms O(t) in (23)–(24) and O(t3) in (25)–(26) were also
calculated, but these are quite lengthy and we omit them for brevity.

It is of interest to compute the amount of drug released from the polymer
sphere at time t:

mt = −3δ

∫ t
0

s22
∂v

∂r

∣∣∣∣
r=s2

dt . (27)

This quantity is simply the integral of the outward flux of drug evaluated at
the outer boundary r = s2(t) and normalised so that mt → 1− as t → ∞ .
In other words, mt is the ratio of the drug released at time t to the amount
of drug initially dissolved in the polymer. Using our results above (and the
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next order terms not included here), we find that

mt ∼
3t

µ
−
3
[
1+ δn(1+ λ)(1− νm) + 2δµ(1− νm)

2
]
t2

2δµ3(1− νm)2
as t→ 0+. (28)

The above results are of considerable interest for a number of reasons. First,
the interface speeds ds1/dt and ds2/dt are both O(1) in the limit t → 0+

which, together with ∂u/∂r(s2, t) = O(1), is unusual for moving boundary
problems of this sort (this phenomenon is often referred to as non-Fickian
or Case II diffusion). Indeed, for the case µ = 0 , the system (1)–(5) resem-
bles a Stefan problem for melting a ice ball, and the interface speeds are
both O(t−1/2) in the limit, the more common scaling. Thus we see that the
kinetic boundary condition (4) with µ > 0 is critical in determining qualitative
behaviour, at least for small time. Further, the problem with µ > 0 leads
to mt = O(t) which corresponds to a constant rate of drug release for early
times, a design output that is often desirable in the pharmaceutical industry.
For νm = 0 there is no swelling, and the above results reduce to those given
by McCue et al. [7], where the νm = 0 problem was considered.

4 Numerical results

Representative numerical results are presented in Figures 1 and 2, computed
using 3001 spatial grid points. For these two figures the parameter values were
chosen by taking typical dimensional quantities from the literature [8, 10, 12]
and rescaling appropriately. We see that in this case the glassy-rubbery
interface r = s1(t) reaches the centre of the polymer ball at te = 0.4606 , at
which time the outer boundary s2 = 1.5462 and the polymer ball has swollen
to 3.70 times its initial volume. The profiles of solvent and drug concentration
at te = 0.4606 are indicated by the blue solid curves. As mentioned above,
after this time the boundary conditions at r = s1(t) are replaced by no flux
conditions at r = 0 . The swelling continues and we find that s2 → 1.6388 for
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Figure 1: Numerical results for the position of the moving boundaries
r = s1(t) and r = s2(t) for parameter values δ = 0.1 , β = 5.55 , νm = 0.77 ,
λ = 0.8 , µ = 0.1 and n = 1 .

large times, implying that the sphere swells to 4.40 times its initial volume
for these parameter values.

Recall the model (1)–(9) with β = 0 was studied by Lin and Peng [6] (our
model extends Lin and Peng [6] by permitting β > 0). They applied a
numerical scheme that involves an approximate similarity solution on each
time step that unfortunately becomes less accurate as time progresses. As
a consequence, their results for moderate to large times are unreliable. For
example, Figure 3 plots the outward flux of drug at r = s2(t) for a variety of
parameter values. The parameter values and scalings on each axis are the
same as those used by Lin and Peng [6, Figures 13 and 14]. In both parts (a)
and (b), the blue curves are taken by scanning the figures shown by Lin and
Peng [6] and digitising the data, while the red curves are our numerical results.
The results obtained by Lin and Peng [6] all have a distinct local minimum
followed by a sharp rise, whereas our results are monotonically decreasing,
which is expected as the flux ∂v/∂r→ 0 as t→∞ for all r.

Further, consider the parameter νm, which is defined to be the additional
volume that the polymer occupies when one mole of the solvent has penetrated
into the polymer ball divided by the volume the mole occupies in the solvent
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(a) profiles of solvent concentration for times t = 0.001 , 0.01,
0.1, 0.3, 0.4606 (blue), 0.6106 and 1.2106 .
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(b) profiles of drug concentration for times t = 0.01 ,
0.4606 (blue), 0.9606, 2.0606, 3.9606 and 10.4606. The ar-
row in part (b) indicates increasing time.

Figure 2: Numerical results for the same parameter values as in Figure 1.
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(a) β = 0 , δ = 1 , νm = 0.116 , λ = 1 and µ = 0.2 , with profiles
from top to bottom drawn for n = 1 , 5 and 10.
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(b) β = 0 , δ = 1 , νm = 0.116 , λ = 1 and n = 1 , with profiles for
µ = 0.5 , 0.2, 0.1 and 0.05 .

Figure 3: Comparison of our numerical results with Lin and Peng [6] for
the outward flux of drug at the surface of the spherical polymer versus time
(both the flux and time are scaled in the same way). The blue solid lines
are results obtained by Lin and Peng [6] and the red solid lines are results
obtained numerically by solving (1)–(9) with 3001 spatial grid points.
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Figure 4: Normalised drug release from the swelling polymer versus time
for δ = 0.1 , n = 1 , β = 0 , µ = 0.1 and for λ = 0.2 (green), 5 (red) and
10 (blue).

pool that surrounds the polymer. Lin and Peng [6] present results (in their
dimensionless variables) that are for νm > 1 , which is not a physically realistic
regime, unless there is perhaps some additional chemistry that causes the
polymer to swell by more than the volume of solvent diffusing into it. This
would lead to alterations in other aspects of the model. As it stands, our
numerical scheme works only for 0 6 νm < 1 . Furthermore, the small time
results presented in Section 3 break down as νm → 1−, as do the large λ
asymptotics outlined by Lin and Peng [6].

One particular issue in designing swelling controlled release systems is the need
to vary the rate of drug release. To take one simple example, Figure 4 presents
the dependence of the normalised drug release mt (computed using (27)) on
time for a fix set of parameters except the control parameter λ, for which
we chose λ = 0.2 , 5 and 10. We see that changing this parameter has a
significant effect on drug release. For example, at dimensionless time t = 4
almost all the drug is released for λ = 0.2 , but very little is released for
λ = 10 . A thorough investigation of the parameter space is likely to reveal a
number of strategies for controlling drug release.
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5 Conclusion

This study concerns the problem (1)–(9), a moving boundary problem with
two moving boundaries. This problem with β = 0 was treated by Lin and
Peng [6], and is based on a one dimensional version proposed by Cohen and
Erneux [3]. The model couples together the processes of solvent penetration
and drug diffusion from a polymeric drug delivery device which is initially
in a glassy state and transitions to a rubbery state after contact with the
solvent. Our problem (1)–(9) with β > 0 is an extension of that treated by
Lin and Peng [6], in that we included a nonlinear diffusion coefficient for drug
diffusion that increases with solvent concentration.

Our main results are twofold. First, we present a numerical scheme that
appears to be considerably more accurate than that described by Lin and
Peng [6]. Second, we provide new asymptotic results for the small time limit
that explicitly show the unusual scalings that result from including the kinetic
boundary condition (4) in the model. In particular, the parameter µ > 0
(which denotes kinetic undercooling in the corresponding Stefan problem
for a melting ice ball) acts to regularise singular behaviour in the limit
t→ 0+, leading to physically more meaningful results. Finally, due to space
restrictions we were unable to explore the role that each parameter has on the
solutions of the problem (1)–(9), nor the consequence in terms of designing
drug release devices. This exercise, as well as including further effects such as
polymer dissolution, is left for further study.
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