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Abstract

Minimisation of a conditional value-at-risk (cvar) is a non-smooth
stochastic minimisation problem with the non-smoothness caused by
a plus function in the integrand of the objective function. We study
the performance of several smoothing approximations of the plus
function in the cvar minimisation, using an example of a one period
cvar-minimising hedging. The smooth plus function that outperforms
others is identified. The convergence of the solution of the smoothed
cvar minimisation problem with increase in the sample size and with
decrease in the smoothing parameter is illustrated. The performance
of the one period cvar-minimising hedging and delta-gamma hedging
are compared in terms of several commonly used performance criteria.
Numerical simulations show that the magnitude and the probability
of large losses are smaller in the cvar-minimising hedge, compared
to the delta-gamma hedge. This often occurs at the expense of a
deteriorated expected return and increased variance of the hedge. We
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identify the situations when the cvar-minimising hedge outperforms
the delta-gamma hedge according to all performance criteria.
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1 Introduction

There is strong emphasis in the financial industry on managing large unex-
pected losses. While value-at-risk (var) is an international benchmark in the
finance industry, cvar is gaining popularity as the portfolio and the hedging
risk measure [1, 2, 7, 10, 11, 13, 14, 15], as it rectifies several shortcomings
of var (for example, lack of sub-additivity and convexity [10, 11]), while
preserving its useful intuitive meaning (section 2).
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cvar minimisation is a non-smooth stochastic minimisation problem with the
non-smoothness caused by a plus function in the integrand of the objective
function [10, 11]. In practice, the expected value in the expression for cvar
is usually approximated with the sample average. In such a setting, a
cvar minimisation problem reduces to a linear programming problem [10, 11].
However, such a problem becomes prohibitively expensive when the sample size
or the number of instruments in the portfolio is large. While some numerical
methods have been developed for solving non-smooth stochastic optimisation
problems, a simple smoothing technique to deal with the non-smoothness of a
stochastic program in cvar has recently been proposed [1, 2, 16] and showed
promising results.

This article continues this line of research. Section 3 reviews several smooth
approximations for the plus function available and show that some of them
are identical, while others can be transformed into each other using a simple
change of a smoothing parameter. We select three distinctive smooth plus
functions and implement them in cvar-minimising algorithms, using an exam-
ple of one period cvar-minimising hedging. We compare their performance
and convergence against the traditional linear programming algorithm. A
smooth plus function that outperforms the others is identified. The con-
vergence of the solution of the smoothed cvar minimisation problem, with
increase in the sample size and with decrease in the smoothing parameter, is
discussed and illustrated.

Portfolio hedging aims at reducing the risk of an investment (target portfolio)
by making an offsetting investment (hedging portfolio). While different types
of hedging exist, one commonly used approach is to match the sensitivities
of the target and hedging portfolios (so-called sensitivity hedging such as
delta hedging, delta-gamma hedging and others). Sensitivity hedges are
instantaneously risk-free if they are re-balanced continuously. However, this
balancing is not possible in practice and the sensitivity hedges are implemented
at discrete time intervals. As a result, the hedged portfolio is no longer risk-
free. If possible, static hedging (replication) should always be relied on to
remove or reduce the risk. However, derivatives contracts generally cannot be
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readily hedged statically. A trading book of derivatives is normally hedged
dynamically via the traditional delta-gamma hedging. An alternative strategy
may be to minimise a particular measure of risk (for example, cvar) for
a chosen time horizon. A smoothing method is shown to speed up the
cvar minimisation significantly and makes cvar-minimising hedging a viable
alternative to delta-gamma hedging in practice. We study the benefits
of cvar-minimising hedging against the traditional dynamic delta-gamma
hedging.

We compare the performance of the one period cvar-minimising and the delta-
gamma hedging, in terms of several commonly used performance criteria.
Numerical simulations in section 4 show that the main advantage of the
cvar-minimising hedging over the delta-gamma hedging is the reduction
in both the magnitude and the probability of large losses in the portfolio.
The numerical simulations show that this reduction is often achieved at the
expense of a deteriorated expected profit and an increased variance of the
portfolio loss distribution. We identify situations when the cvar-minimising
hedge outperforms the delta-gamma hedge according to several commonly
used performance criteria.

2 CVaR minimisation

2.1 CVaR as a risk measure

Let f(x, s) be a loss function associated with the decision vector x and a
random vector s with a probability density function ρ(s) that represents
market uncertainties. For a given portfolio, let Ψ(x,β) denote the probability
of the loss function f(x, s) not exceeding a particular value β:

Ψ(x,β) =

∫
f(x,ζ)6β

ρ(ζ)dζ .
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The value-at-risk (var) with a confidence level α is defined as βα(x) =
inf {β ∈ R : Ψ(x,β) > α}, and the conditional value-at-risk (cvar) is defined
as

φα(x) = inf
β∈R

{
β+

1

1− α
E[[f(x, s) − β]+]

}
, (1)

where E[·] stands for the expectation and, for any t ∈ R, [t]+ = max{t, 0} .

Rockafellar and Uryasev [10, 11] established that the problem of minimisation
of cvar is equivalent to the problem

min
x∈RN

φα(x) = min
(x,β)∈RN×R

Fα(x,β), Fα(x,β) = β+
1

1− α
E [[f(x, s) − β]+] .

(2)

In financial applications, the expected value typically cannot be calculated in
a closed form, and is approximated by a sample average through, for example,
Monte Carlo simulations. In this case, the problem (2) is replaced by the
problem

min
(x,β)∈RN×R

FMα (x,β), FMα (x,β) = β+
1

M(1− α)

M∑
j=1

[f(x, sj) − β]+, (3)

where the loss function f(x, s) is linear in the decision variables f(x, s) =
xTv(s) + f0(s), v(s) is the random vector of changes in the prices of portfolio
instruments, and f0(s) represents the loss of the target portfolio. Thus the
problem of minimising the cvar (3) is equivalent to a linear programming (lp)
problem.

When the loss function is represented by M scenarios f(x, sj), j = 1, . . . ,M ,
cvar is calculated as [10, 11]

φα(x) =
1

1− α

[
(kα/M− α)βα(x) +

1

M

M∑
k=kα+1

fs(x, sk)

]
, (4)
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where fs(x, sj) are losses sorted in ascending order, and kα is the unique index
satisfying the inequality

M− kα 6 (1− α)M <M− kα + 1 . (5)

2.2 CVaR minimisation by a smoothing method

The cvar minimisation problem (3) is a non-smooth stochastic optimisation
problem, with the non-smoothness caused by a plus function in the integrand of
the objective function. It can be treated by applying smoothing approximation
to the plus function. Then, a smoothed approximate minimisation problem
has a form

min
(x,β)∈RN×R

F̂Mα (x,β), F̂Mα (x,β) = β+
1

M(1− α)

M∑
j=1

[
p̂(f(x, sj) − β, ε)

]
,

(6)
where p̂(x, ε) is a smooth approximation for a plus function, ε is the smoothing
parameter. Xu and Zhang [16] recently studied the convergence of stationary
points of the approximate problem (6) to those of the original problem (3).

3 Smooth approximations for the plus

function

We consider smooth approximations for the plus function [x]+ that satisfy a
general definition [16].

Definition 1 Function p̂(x, ε) : RN×R→ R (where ε is a smoothing param-
eter) is a smoothing of [x]+ if it satisfies

1. p̂(x, 0) = [x]+ for every x ∈ RN;

2. p̂(x, 0) is continuously differentiable on RN × R\{0};
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3. p̂(x, 0) is locally Lipschitz continuous at (x, 0).

Many smooth approximations for the plus function [x]+ have been proposed [5,
16]. Below, we review several commonly used smooth approximations.

1. The Neural Networks smooth plus function [4, 5]

p̂1(x, ε) = x+ ε log(1+ e−x/ε). (7)

2. Alexander–Coleman–Li smooth plus function [1, 2]

p̂2(x, ε) =


x if x > ε ,
(x+ ε)2/(4ε) if |x| 6 ε ,
0 if x < −ε .

(8)

3. Peng smooth plus function [8]

p̂3(x, ε) = ε log(1+ ex/ε), ε > 0 . (9)

4. Pinar–Zenios smooth plus function [9]

p̂4(x, ε) =


x− ε/2 if x > ε ,
x2/(2ε) if 0 6 x 6 ε ,
0 if x < 0 .

(10)

5. Chen–Harker, Kanzow, Smale smooth plus function [3, 6, 12]

p̂5(x, ε) =
(
x+

√
x2 + 4ε2

)
/2 . (11)

6. Zang smooth plus function [18]

p̂6(x, ε) =


x if x > ε/2 ,
(x+ ε/2)2/(2ε) if |x| 6 ε/2 ,
0 if x < −ε/2 .

(12)
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Figure 1: Smooth approximations to the plus function for ε = 0.05 ; the
plus function is shown with solid curve; the left figure shows p̂4(x, ε) (dashed
curve), p̂6(x, ε) (dotted curve) and p̂2(x, ε) (dashed-dotted curve); the right
figure shows p̂5(x, ε) (dashed curve), p̂6(x, ε) (dotted curve) and p̂1(x, ε)
(p̂3(x, ε)) (dashed-dotted curve).

One can see that p̂1(x, ε) is identical to p̂3(x, ε)

p̂1(x, ε) = x+ ε log(1+ e−x/ε) = x+ ε log((1+ ex/ε)e−x/ε)

= x+ ε log(1+ ex/ε) − x = p̂3(x, ε).

With the smoothing parameter change ε = ε̃/2 , then p̂2(x, ε) transforms
into p̂6(x, ε̃), which, in turn, then transforms into p̂4(x̃, ε̃) with the change of
variables x + ε/2 = x̃ . Of these three functions, p̂6(x, ε) provides the best
approximation for the plus function (see Figure 1, left).
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In the following, we limit consideration to the three distinctive smooth
plus functions p̂1(x, ε), p̂5(x, ε) and p̂6(x, ε). They are illustrated in Fig-
ure 1 (right) for different values of ε. We can see that, for the same value
of ε, smooth plus function p̂6(x, ε) approximates the plus function with a
better accuracy than the other two.

4 Numerical study

4.1 Performance of smooth plus functions in
CVaR-minimising hedging

We compare the performance of three classes of smooth plus functions, dis-
cussed in Section 3, using an example of one period cvar-minimising hedging.
The performance and convergence of the smoothing method are compared
against the solution obtained via linear programming [10, 11].

Consider a problem of hedging a short call option with the time to maturity
of fifteen days and with the strike price of 100, using the underlying asset
and another option on the underlying asset. The time period is [0, t], and
the price of the underlying asset is

s(t) = s0 exp
[
(µ− σ2/2)t+ σ

√
tΩ
]

, (13)

where s0 is the initial price, µ and σ are the drift and the volatility of the
underlying asset price, Ω ∼ N(0, 1). The loss function associated with such a
portfolio is

f(x, s) = δC− xuδs− x1δC
(1). (14)

where xu and x1 are the numbers of units of the underlying asset and of
the hedging option respectively, C(s) and C(1)(s) are the prices of the target
and the hedging option respectively, δC = C(s(t)) − C(s0), δs = s(t) − s0 ,
δC(1) = C(1)(s(t))−C(1)(s0). Note that, with this definition, a loss is positive,
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Figure 2: Convergence comparison for several smooth plus functions in
cvar minimisation. The left figure shows xu (lower curves) and x1 (upper
curves) as functions of ε for p̂6(x, ε) (dotted curves), p̂5(x, ε) (dashed curves)
and p̂1(x, ε) (dashed-dotted curves). lp solutions are shown with solid curves.
The right figure shows cvar as a function of ε for p̂6(x, ε) (dotted curve)
and p̂5(x, ε) (dashed curve).

while a negative loss means a profit. The target option C is a short call with
the strike K = s0 and the time to maturity of ten days, while the hedging
option C(1) is a call with the strike K = s0 and the time to maturity of fifteen
days. The time horizon is three days.

We generate a sample of M scenarios for the price of the underlying asset sj,
j = 1, . . . ,M , via Monte Carlo simulations. The parameters of the model
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Figure 3: Relative standard deviations (rsd) of cvar estimates. Blue curve
shows the rsd of cvar estimates from the lp method, while red curve shows
the rsd of cvar estimates from the smoothing method, with mean value of
cvar estimates from the lp method taken as a true estimate. The smoothing
method used Zang smooth plus function (12) with ε = 10−3.

are taken as µ = 0.1 , σ = 0.2 , s0 = 100 . The prices of call options are
calculated according to the Black–Scholes formula with the risk-free interest
rate r = 0.04 . The probability level for cvar used throughout the study
is α = 0.95 . For the linear programming approach, we use the imsl sparse
lp solver slprs, whereas for smoothed minimisation we use the imsl quasi-
Newton optimiser bcong.

Figure 2 shows the cvar values (on the right) and the decision variables (on
the left), calculated for various ε and for M = 1000 . The cvar and the
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decision variables from the smoothing method converge to lp solutions as
ε→ 0 . All smooth plus functions showed robust performance in the quasi-
Newton optimiser, with little dependence on the initial guess. However, the
solution with p̂3(x, ε) could not be calculated for small values of ε (ε < 0.014)
because ex/ε becomes very large (outside the machine precision).

One can see that the comparative convergence of the approximate optimal
solutions for different smooth plus functions reflects the order in which these
smooth plus functions approximate the plus function for a given ε (see
Figure 1). Thus, the solution that uses the smooth plus function p̂6(x, ε)
approximates the lp solution very closely for a wide range of values of ε, while
the performance of p̂1(x, ε) and p̂5(x, ε) are not as good. In Figure 2, the
approximation for cvar with p̂6(x, ε) is virtually indistinguishable from the
lp solution for ε < 10−3 (and higher values as well), while approximation for
cvar with p̂5(x, ε) is sufficiently close for ε < 2× 10−4, but increases rapidly
for larger values of ε. Optimisation with very small values of ε (ε < 10−7)
becomes unreliable for all smooth plus functions.

The accuracy of the smoothing method depends on both the smoothing
parameter ε and on the number of Monte Carlo simulations M. Therefore
M and ε should be chosen in accordance with each other. We consider the
cvar estimate obtained via the lp method as a true estimate. As such an
estimate itself incurs error due to the Monte Carlo sample size, the Monte
Carlo error should be taken into account when selecting the appropriate value
of ε.

We evaluate the estimation error as follows [17]. We compute the cvar
estimates using the lp method with sample sizes of 1000, 2000, 4000, 8000,
and 10000. For each sample size, we generate 100 different samples and
calculate the mean and the standard deviation of the cvar estimate. We
treat the mean value of cvar as a true value and estimate the standard
deviation of the smoothing method estimates using this mean value. We
then compute the relative standard deviation (rsd) (the ratio of the standard
deviation and the mean value) and use it to estimate the error of the smoothing
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method. Figure 3 shows the relative standard errors of the cvar estimates
as functions of Monte Carlo simulations number. The Zang smooth plus
function (12) with the same value of the smoothing parameter ε = 10−3 was
used in all calculations. Figure 3 shows that the accuracy of the smoothing
method improves with increasing Monte Carlo sample size. The accuracy of
the cvar estimate from the lp method also improves with increasing Monte
Carlo sample size. When selecting the suitable value of ε for a given M,
ε should not be decreased beyond a particular level because otherwise the
errors in the Monte Carlo simulations would dominate the calculations. The
results shown in Figure 3 suggest that the same value of the smoothing
parameter ε = 10−3 can be used for all Monte Carlo sample sizes in this
example.

The reduction in computing time for the smoothed cvar minimisation prob-
lem, as compared to lp, is dramatic. In the above example, the lp algorithm
takes approximately 90 secs, whereas the smoothed optimisation method
requires less than 0.1 secs.

4.2 Comparative study of one period
CVaR-minimising and delta-gamma hedging

An efficient cvar minimisation via the smoothing method makes the cvar-
minimising hedging a realistic alternative to the delta-gamma hedging com-
monly used in practice. We compare the performance of one period delta-
gamma hedging and cvar-minimising hedging. The model parameters are as
in Section 4.1. We use M = 1000 , as Figure 3 shows that this size of Monte
Carlo sample provides sufficient accuracy in this example. The Zang smooth
plus function (12) is used in smoothed cvar minimisation.

In delta-gamma hedging, delta (∆) measures the sensitivity of the value of
an option to changes in the price of the underlying stock assuming all other
parameters remain unchanged and is represented as the partial derivative of
the option’s fair value with respect to the price of the underlying security.
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Table 1: Comparison of delta-gamma and cvar-minimising hedges
Time horizon Hedge type cvar Exp. return Std deviation

(days)
1 delta-gamma 5.437e−3 −3.523e−3 1.273e−3

min cvar 4.339e−3 −3.659e−3 1.854e−3
2 delta-gamma 1.522e−2 −7.291e−3 5.389e−3

min cvar 1.093e−2 −7.851e−3 7.913e−3
3 delta-gamma 2.985e−2 −1.134e−2 1.283e−2

min cvar 2.057e−2 −1.263e−2 1.901e−2

When the change in the value of the underlying security is not small, the
second order term cannot be ignored. Gamma (Γ) measures the rate of change
in delta with respect to changes in the underlying price and is represented as
the second derivative of the value with respect to the underlying price.

For the example (14) in Section 4.1, ∆ = ∂Π/∂s = x1∂C
(1)/∂s− ∂C/∂s+xu ,

Γ = ∂2Π/∂s2 = −∂2C/∂s2 + x1∂
2C(1)/∂s2. To eliminate instantaneous risk,

positions need to be selected as

xu = −x1∂C
(1)/∂s+ ∂C/∂s , x1 =

∂2C/∂s2

∂2C(1)/∂s2
. (15)

Numerical simulations show that a cvar-minimising hedge always reduces
the magnitude of large losses, compared to a delta-gamma hedge. However,
there is often a trade-off between the cvar and other performance criteria
if the same volatility is used for the underlying asset and for the options.
Table 1 gives examples where commonly used performance criteria, such as the
cvar, the expected return and the variance, are shown for delta-gamma and
cvar-minimising hedges for several time horizons. Table 1 shows that while
the cvar-minimising hedge delivers significant reduction in large losses, the
delta-gamma hedge has larger expected return values and smaller variability
(characterised by the standard deviation).
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b) CVaR-minimising hedge
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Figure 4: Loss distributions of the delta-gamma hedge and cvar-minimising
hedge; σ = 0.5 , σimpl = 0.65 , hedging option with maturity of five days, strike
100, time horizon of three days, 1000 Monte Carlo simulations; a) cvar is
9.91e−2, expected return is 7.77e−4, Standard deviation is 8.37e−2; b) cvar
is 4.51e−2, expected return is 3.19e−2, Standard deviation is 4.94e−2.
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In practice, the implied volatility σimpl for options is mostly different from
the historical volatility σ of the underlying asset. Implied volatility is usually
larger than the realised volatility of the underlying asset, because by using
larger implied volatility when pricing options, traders can reduce the risk of
making a loss in hedging. The performance of the cvar-minimising hedge and
the delta-gamma hedge with different volatilities for the underlying asset and
for options on the underlying are compared in Figure 4 under the generally
high volatility σ = 0.5 , σimpl = 0.65 . Figure 4 shows that the loss distribution
of the cvar-minimising hedge has significantly shorter tail, larger expected
return and smaller variability. Numerical simulations show that the advantage
of the cvar-minimising hedge increases with increase in both the historical
volatility and the difference between the implied and the historical volatilities.

5 Conclusions

The performance of several smooth plus functions in one period cvar min-
imising hedging is studied and it is shown that the Zang [18] smooth plus
function (12) outperforms other smooth plus functions. The accuracy of the
approximation improves with increasing Monte Carlo sample size and with
decrease in the smoothing parameter. Due to the inherent error in Monte
Carlo sampling, which grows as the sample size decreases, a decrease in the
smoothing parameter value may not be required to improve the accuracy for
smaller Monte Carlo samples.

By using the smoothing method, cvar minimisation is sped up by a factor
of 1000 in our test example, compared to the traditional lp method. This
makes the cvar-minimising hedging a realistic alternative to delta-gamma
hedging in practice. Numerical simulations suggest that the cvar-minimising
hedging may outperform delta-gamma hedging according to several commonly
used performance criteria, in the environment of a high volatility.

We considered the hedging of vanilla European options as an example, to
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demonstrate the effectiveness of the cvar-minimising hedging approach.
However, such an approach is not limited to European options and can be
applied to various derivatives. While the Black–Scholes formula is used to price
European options in this study, this does not mean that the underlying asset
must follow a geometrical Brownian process (which is the assumption of the
Black–Scholes–Merton methodology). In financial markets, as a convention,
the Black–Scholes formula is used to express the price of vanilla European
options through their quoted implied volatilities. The Black–Scholes formula
is merely a short-hand to convert the quoted implied volatility into a price.

For the cvar-minimising hedging, the underlying asset can assume any
stochastic process, for example, a geometrical Brownian motion with jumps,
and also a historical asset price movement can be readily assumed. cvar-
minimising hedging is not restricted to the assumption of Black–Scholes–
Merton methodology, whereas the dynamic delta-gamma hedging implic-
itly relies on the same assumption as the pricing model (for example, the
Black–Scholes–Merton assumption of a geometrical Brownian process for
the underlying in the example above). We expect that the advantage of
the cvar-minimising hedging over the delta-gamma hedging may be more
pronounced for jump-diffusion models, and for situations when historical data
are used for the underlying price.

References

[1] S. Alexander, T. F. Coleman, and Y. Li, Derivative portfolio hedging
based on cvar. In G. Szego, editor, Risk Measures for the 21st
Century, pages 339–363. London: Wiley, 2004. C238, C239, C243

[2] S. Alexander, T. F. Coleman, and Y. Li, Minimizing cvar and var for
a portfolio of derivatives. Journal of Banking and Finance, 30(2), 2006,
583–605. doi:10.1016/j.jbankfin.2005.04.012 C238, C239, C243

http://dx.doi.org/10.1016/j.jbankfin.2005.04.012


References C254

[3] B. Chen, and P. T. Harker, A non-interior-point continuation method
for linear complementarity problems, SIAM Journal on Matrix Analysis
and Applications, 14, 1993, 1168–1190. doi:10.1137/0614081 C243

[4] C. Chen, and O. L. Mangasarian, Smoothing method for convex
inequalities and linear complementary problems, Mathematical
Programming, 71(1), 1995, 51–69. doi:10.1007/BF01592244 C243

[5] C. Chen, and O. L. Mangasarian, A class of smoothing functions for
nonlinear and mixed complimentarity problems, Computational
Optimization and Applications, 5(2), 1996, 97–138.
doi:10.1007/BF00249052 C243

[6] C. Kanzow, Some tools allowing interior-point methods to become
noninterior, Technical Report, Institute of Applied Mathematics,
University of Hamburg, Germany, 1994. C243

[7] H. Mausser, and D. Rosen, Beyond var: from measuring risk to
managing risk. ALGO Research Quarterly, 1(2), 1998, 5–20. C238

[8] J. Peng, A smoothing function and its applications. In M. Fukushima,
and L. Qi, editors, Reformulation: Nonsmooth, Piecewise Smooth,
Semismooth and Smoothing Methods, pages 293–316. Kluwer, Dordrecht,
1998. C243

[9] J.-S. Pinar, and S. A. Zenios, On smoothing exact penalty functions for
convex constrained optimization, SIAM J. Optimization, 4, 1994,
486–511. doi:10.1137/0804027 C243

[10] R. T. Rockafellar, and S. Uryasev, Optimization of Conditional value at
Risk, Journal of Risk, 2(3), 2000, 21–41. C238, C239, C241, C245

[11] R. T. Rockafellar, and S. Uryasev, Conditional Value at Risk for General
Loss Distributions, Journal of Banking and Finance, 26(7), 2002,
1443–1471. doi:10.1016/S0378-4266(02)00271-6 C238, C239, C241, C245

http://dx.doi.org/10.1137/0614081
http://dx.doi.org/10.1007/BF01592244
http://dx.doi.org/10.1007/BF00249052
http://dx.doi.org/10.1137/0804027
http://dx.doi.org/10.1016/S0378-4266(02)00271-6


References C255

[12] S. Smale, Algorithm for solving equations, In Proceedings of the
International Congress of Mathematicians, pages 172–195, Amer. Math.
Soc., Providence, 1987. C243

[13] T. Tarnopolskaya, J. Tabak, and F. R. de Hoog, L-curve for hedging
instrument selection in cvar-minimizing portfolio hedging, In R. S.
Anderssen, R. D. Braddock and L. T. H. Newham, editors, 18th World
IMACS Congress and MODSIM09 International Congress on Modelling
and Simulation, pages 1559–1565, July 2009.
http://www.mssanz.org.au/modsim09/D11/tarnopolskaya_D11.pdf.
C238

[14] T. Tarnopolskaya, and Z. Zhu, A robust hedging strategy via cvar
minimization, Proceedings of the First Chinese Forum on Intelligent
Finance (CFIF-I 2009), Beijing, February 2009. C238

[15] S. P. Uryasev, and R. T. Rockafellar, Conditional value-at-risk:
Optimization approach. Stochastic Optimization: Algorithms and
Applications, 54, 2001, 411–435. C238

[16] H. Xu, and D. Zhang, Smooth sample average approximation of
stationary points in nonsmooth stochastic optimization and applications,
Mathematical Programming, 119(2), 2009, 371–401.
doi:10.1007/S10107-008-0214-0 C239, C242, C243

[17] Y. Yamai, and T. Yosiba, Value-at-risk versus expected shortfall: a
practical perspective, Journal of Banking and Finance, 29, 2005,
997–1015. doi:10.1016/j.jbankfin.2004.08.010 C248

[18] I. Zang, A smoothing-out technique for min-max optimization,
Mathematical Programming, 19, 1980, 61–77. doi:10.1007/BF01581628
C243, C252

http://www.mssanz.org.au/modsim09/D11/tarnopolskaya_D11.pdf
http://dx.doi.org/10.1007/S10107-008-0214-0
http://dx.doi.org/10.1016/j.jbankfin.2004.08.010
http://dx.doi.org/10.1007/BF01581628


References C256

Author addresses

1. T. Tarnopolskaya, CSIRO Mathematics, Informatics and Statistics,
Sydney, Australia.
mailto:tanya.tarnopolskaya@csiro.au

2. Z. Zhu, CSIRO Mathematics, Informatics and Statistics, Melbourne,
Australia.

mailto:tanya.tarnopolskaya@csiro.au

	Introduction
	CVaR minimisation
	CVaR as a risk measure
	CVaR minimisation by a smoothing method

	Smooth approximations for the plus function
	Numerical study
	Performance of smooth plus functions in CVaR-minimising hedging
	Comparative study of one period CVaR-minimising and delta-gamma hedging

	Conclusions
	References

