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A well balanced scheme for the shallow water
wave equations in open channels with
(discontinuous) varying width and bed
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Abstract

Finite volume methods have proven themselves a powerful tool
for finding solutions to the shallow water wave equations. They are
based on the conservation laws for the mass and momentum, integrated
over discrete finite volumes. These methods tend to do well at the
difficult problem of capturing solutions involving shocks. However,
one area that causes problems is the approximation of steady or near
steady states when there is a sloping bed elevation. The problem
arises due to a poor balance between the discretisation of the flux
terms across the edge of a finite volume and the pressure terms due
to the sloping bed. Methods that overcome these difficulties and
reproduce the still lake steady state solution, are called well balanced.
In this work we are interested in a well balanced scheme for the one
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dimensional shallow water wave equations but with a modification
that allows for varying width in the transverse direction. Here a well
balanced method developed by Audusse et al. for the constant width
case is extended to the case of varying (possibly discontinuous) width.
Numerical validation of this new method is provided.
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1 Introduction

The flow in an open channel of constant width is well modeled by the one
dimensional shallow water wave equations, which are given by the system of
conservation laws

∂

∂t

[
h

hu

]
+
∂

∂x

[
hu

hu2 + 1
2
gh2

]
=

[
0

−hgzx

]
, (1)
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where h(x, t) is water depth, u(x, t) is depth averaged horizontal velocity,
z(x) is the bed elevation, and g is the constant of gravitational acceleration.
Another variable, which we use extensively, is w = h+ z , called the stage, or
the vertical position of the water surface (see Figure 1).

Equation (1) has the form

∂

∂t
q +

∂

∂x
f(q) = s(q), (2)

where q is the vector of conserved quantities, mass and momentum, f(q) is
the flux of the conserved quantities, and s(q) is the pressure forcing term due
to the water pressure generated by the sloping bed. Explicitly

q =

[
h

hu

]
, f(q) =

[
hu

hu2 + 1
2
gh2

]
and s(q) =

[
0

−ghzx

]
.

A numerical scheme for the shallow water wave equations is said to be well
balanced if the still lake steady state solution (constant stage w = c and zero
velocity u = 0) is exactly reproduced by the numerical scheme. In particular,
when w = c and u = 0 , the numerical approximation of the flux pressure
term

(
1
2
gh2
)
x

needs to balance exactly the numerical approximation of the
pressure forcing term −ghzx. This is an important property for accurate
solutions of many practical problems such as flows in lakes and estuaries and
in tsunami inundation.

Now consider a channel of varying width b(x). The cross sectional area of
water at any point along a channel is bh, and the discharge (momentum)
across this cross section is bhu. These new conserved variables give a new
system of conservative laws:

∂

∂t

[
bh

bhu

]
+
∂

∂x

[
bhu

bhu2 + 1
2
gh2b

]
=

[
0

−hgzxb+
1
2
gh2bx

]
, (3)

which are written in the form of Equation (2), but with different expressions
for the conserved quantities, flux and forcing term; namely

q =

[
hb

hbu

]
, f(q) =

[
hbu

hbu2 + 1
2
gbh2

]
,
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Figure 1: Nomenclature for shallow water wave equations, Equation (1);
depth of water, h; elevation of the bed, z; the stage, w = h + z ; and the
depth averaged horizontal velocity, u.

and s(q) =

[
0

−ghbzx +
1
2
gh2bx

]
.

In this article we develop a well balanced method to solve the shallow water
wave equations for open channel flow with varying width, that is, Equation (3).
We consider the situation where both the width b and the bed elevation z
of the channel can be discontinuous. Well balancing is important for many
practical problems. For instance, for tracking the movement of a surge up a
river of greatly varying width and depth over a long distance, it is important
that the steady part of the solution is accurately maintained until the surge
reaches a point of interest.

To develop a well balanced scheme for Equation (3) we extend a well balanced
method for Equation (1) developed by Audusse et al. [1]. Audusse’s method
is particularly simple and flexible while still retaining the desired properties
of other numerical schemes.

There are of course other options, such as a simple scheme developed by
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Zhou et al. [8] called the surface-gradient method, but this requires z to
be defined as a piecewise affine continuous function. There are also more
complicated methods such as the exact Godunov solver (based on the exact
solution to the Riemann problem) which theoretically should solve the prob-
lem without giving up other desirable properties but it is computationally
expensive [1]. Leveque [5] described a well balanced method which deals with
the forcing term and balancing, first by adjusting heights and then applying
a numerical method to calculate fluxes.

Audusse’s method has no problem with discontinuous z, is computationally
efficient (provided an efficient numerical flux algorithm is used), and is
obtained as a fairly simple modification of any standard method. So we use
this as the basis for our new method. Section 2 provides an introduction to
the basic structure of the finite volume method, together with a description of
our notation. Then Section 3 overviews the well balancing method developed
by Audusse et al. [1].

Audusse’s method is not fixed to any specific numerical scheme for computing
the fluxes or any particular time stepping algorithm. Therefore these details
can be chosen at the time of implementation. Thus Sections 2 and 3 describe
our method in the context of a semi-discrete algorithm.

Section 5 presents two sets of numerical experiments, verifying that the new
scheme is well balanced for a still lake problem, and that it still works well
for a challenging non-stationary problem containing a shock.

2 The standard finite volume method

A domain [a,b] is partitioned into a collection of n intervals Ii = [xi− 1
2
, xi+ 1

2
],

i = 1, . . . ,n . The midpoint of the ith interval is xi and the mesh size of the
ith interval is ∆xi = xi+ 1

2
− xi− 1

2
.

We restrict our attention to functions g (here not gravity) on [a,b] which
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are continuous when restricted to each closed interval Ii (and hence have left
and right limits at each of the end points xi+ 1

2
). On each interval, we are

interested in three discrete values derived from g: the average value gi of g
on that interval, gi∆xi =

∫
Ii
g(x)dx ; the limiting value of g at right end of

that interval, gi,r = g(xi+ 1
2
−); and the limiting value of g at the left end of

that interval, gi,l = g(xi− 1
2
+).

Given a set of discrete integral averages, gi, associated with each interval
in our partition, we consider a procedure to reconstruct a function g such
that g is affine when restricted to each interval Ii and maintains the averages,
that is,

∫
Ii
g(x)dx = gi∆xi . The reconstruction procedure should reconstruct

constants, that is, if the gi’s are constant, then the reconstructed g is con-
stant. One such reconstruction procedure is given by the piecewise constant
function

∑
i giχIi . More accurate reconstructions are possible, such as van

Leer’s classic muscl scheme [7]. In these more accurate reconstructions it
is necessary to avoid introducing excessive oscillations by ensuring that the
total variation of the reconstruction satisfies

TV(g) 6 TV

(∑
i

giχIi

)
, (4)

where TV is the total variation of a function. This property is usually obtained
by ‘limiting’ the gradient of the reconstructed function so as to satisfy (4).

We describe the finite volume discretization of the shallow water wave equation
using the form of the equations given by Equation (2). This allows a simple
extension to the varying width equation. The finite volume discretization of
Equation (2) is obtained by integrating Equation (2) over each interval Ii and
then applying integration by parts to the flux term, to obtain a set of ordinary
differential equations for the average of the vector of conserved quantities in
each of the intervals. In particular

d

dt

∫ xi+1/2

xi−1/2

q(x, t)dx+ f(q(xi+ 1
2
, t)) − f(q(xi+ 1

2
, t)) =

∫ xi+1/2

xi−1/2

s(q)dx . (5)
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Let qi be the discrete approximation of the average value of the conserved
quantity vector in the interval Ii, that is,

qi∆xi ≈
∫ xi+1/2

xi−1/2

q(x, t)dx .

The approximation of the flux at xi+ 1
2

is

fi+ 1
2
= fa(qi,r, qi+1,l) ≈ f(q(xi+ 1

2
, t)),

where the terms qi,r and qi+1,l are the left and right limiting values at xi+ 1
2
, of

the piecewise affine function reconstructed from the discrete average values qi.
The function fa(q−, q+) is a numerical scheme for approximating the flux
generated at the origin by Equation (2) when the initial data consist of a
constant state q− to the left of the origin, and a constant state q+ to the
right.

The term

si∆xi =

[
0

−
∫xi+1/2

xi−1/2
ghzx dx

]
≈

∫ xi+1/2

xi−1/2

s(q(x, t))dx .

Since h and z are affine functions when restricted to Ii, the integral is
calculated exactly to yield

si =

[
0

− 1
2
g(hi,r + hi,l)

(zi,r−zi,l)
∆xi

]
.

This leads to a discrete scheme

d

dt
qi +

1

∆xi

(
fi+ 1

2
− fi− 1

2

)
= si . (6)

A particular finite volume method is defined in terms of the reconstruction
method for qi = [hi ,hiui]

T and zi, the approximate flux function fa, and
the particular ordinary differential equation method used to approximate
Equation (6).
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3 Audusse’s well balanced method

Unfortunately the scheme (6) is not guaranteed to reproduce the still lake
steady state solution; that is, it is not guaranteed to be well balanced. But
Audusse et al. [1] provides a simple method to convert a standard finite
volume method into a well balanced scheme.

The Audusse scheme has the form

d

dt
qi +

1

∆xi

(
f̂i+ 1

2
− f̂i− 1

2

)
= (si + ci) , (7)

where the flux terms are adjusted to deal with discontinuities in the bed, and
an extra forcing term ci is added to correct the calculations so that the still
lake solution is reproduced.

The adjusted flux calculation is based on a standard flux calculation, but
applied to a so-called hydrostatic reconstruction of q. The hydrostatic
reconstructions of z and h (see Figure 2) at the point xi+ 1

2
are

ẑi+ 1
2
= max(zi+1,l, zi,r),

ĥi,r = max(0,hi,r + zi,r − ẑi+ 1
2
),

ĥi+1,l = max(0,hi+1,l + zi+1,l − ẑi+ 1
2
).

(8)

This leads to adjusted left and right interface values for the conserved quanti-
ties, q at the point xi+ 1

2
:

q̂i,r =

[
ĥi,r
ĥi,rui.r

]
, q̂i+1,l =

[
ĥi+1,l

ĥi+1,lui+1,l

]
.

The hydrostatic flux calculation is finally defined as

f̂i+ 1
2
= fa(q̂i,r, q̂i+1,l).
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zi,r

zi+1,l

hi,r hi+1,l
ĥi+1,l

ĥi,r

ẑi+ 1
2
= max{zi,r, zi+1,l}

xi+ 1
2

Figure 2: Modified values of height and bed, ĥi,r, ĥi+1,l and ẑi+ 1
2
, for Audusse’s

well balanced scheme.

The extra forcing term, ci, in Equation (7) has two components, associated
with the flux pressure terms on the left and right of the ith interval,

ci = ci,r + ci,l ,

where

ci,r =
1
∆xi

[
0

1
2
g ĥ2i,r −

1
2
gh2i,r

]
,

ci,l = 1
∆xi

[
0

1
2
gh2i,l −

1
2
g ĥ2i,l

]
.

Audusse et al. [1] provided a proof that this method is well balanced, consistent
with the shallow water wave equations and is formally second order accurate.

If the stage values are constant (wi = c) and the velocity values zero (ui = 0),
then the interface values of stage and velocity will be c and 0 respectively. In
this case

f̂i+ 1
2
= fa(q̂i+1,l, q̂i,r) =

[
0

1
2
g ĥ2i,r

]
,
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and the correction term ci,r cancels with the numerical flux to give

1

∆xi
f̂i+ 1

2
− ci,r =

1

∆xi

[
0

1
2
gh2i,r

]
.

Similarly for the left interface,

−
1

∆xi
f̂i− 1

2
− ci,l = −

1

∆xi

[
0

1
2
gh2i,l

]
.

Thus the numerical fluxes and the forcing terms satisfy

1

∆xi

(
f̂i+ 1

2
− f̂i− 1

2

)
− (ci,r + ci,l + si)

=
1

∆xi

[
0

1
2
gh2i,r −

1
2
gh2i,l −

1
2
g (hi,r + hi,l) (zi+1,l − zi,r)

]
=

1

∆xi

[
0

1
2
g (hi,r + hi,l) (hi+1,l + zi+1,l − hi,r − zi,r)

]
= 0 ,

since the reconstructed stage is constant, c = hi+1,l + zi+1,l = hi,r − zi,r . So
Audusse’s method reproduces a still lake solution.

4 Modified method for variable width

equations

Equation (3) models flow in a channel of varying width. A well balanced
scheme for this problem must balance the flux pressure term ( 1

2
gbh2)x with

the pressure forcing term −ghbzx+
1
2
gh2bx . The problem of developing a well

balanced scheme can be significantly simplified if the width is restricted to be
a piecewise affine continuous function or a piecewise constant (discontinuous)
function. In these cases simple methods give the well balanced property. We
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are interested in the more difficult situation when both the width and the bed
elevation are piecewise affine discontinuous functions. To tackle this problem
we set up a similar situation as in the constant width case, where in the
steady state case we have known exact flux pressure terms at the edges.

First we have the problem of defining b at the interval edges (as we previously
had to define a hydrostatic approximation for z). Given piecewise affine
reconstructions for b, z and q, at time t we let

b̂i+ 1
2
=
1

2
(bi+1,l + bi,r)

and define adjusted conserved quantities as

q̂i,r =

 ĥi,rb̂i+ 1
2

ĥi,rui.rb̂i+ 1
2

 , q̂i+1,l =

 ĥi+1,lb̂i+ 1
2

ĥi+1,lui+1,lb̂i+ 1
2

 .

We now define a ‘correction’ term ci = ci,l+ci,r so that in the case of a steady
lake we get the same cancellation as for Audusse’s method, leaving us with
some form of ‘exact’ flux pressure term. The correction terms are

ci,r =
1

∆xi

[
0

1
2
g ĥ2i,rb̂i+ 1

2
− 1

2
gh2i,rbi,r

]
,

ci,l =
1

∆xi

[
0

1
2
gh2i,lbi,l −

1
2
g ĥ2i,lb̂i+ 1

2

]
.

If the stage is constant and the velocity zero, then q̂i,r = q̂i+1,l and

f̂i+ 1
2
= fa(q̂i+1,l, q̂i,r) =

[
0

1
2
g ĥ2i,rb̂i+ 1

2

]
,

so that
1

∆xi
f̂i+ 1

2
− ci,r =

1

∆xi

[
0

1
2
gh2i,rbi,r

]
.
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Similarly at the left edge,

−
1

∆xi
f̂i− 1

2
− ci,l = −

1

∆xi

[
0

1
2
gh2i,lbi,l

]
.

In the still lake case, w = c and u = 0 , we have

1

∆xi

(
f̂i+ 1

2
− f̂i− 1

2

)
− (ci,l + ci,r) =

1

∆xi

[
0

1
2
gh2i,rbi,r −

1
2
gh2i,lbi,l

]
=

1

∆xi

[
0∫xi+1/2

xi−1/2

(
1
2
gh2b

)
x
dx

]
.

Now we need to approximate si to ensure well balancing. This is quite simple,
we just set

si =
1

∆xi

[
0∫xi+1/2

xi−1/2

(
−ghbzx +

1
2
gh2bx

)
dx

]
.

The integral is evaluated exactly. The pressure forcing term is quadratic in
nature. Both z and b are affine functions when restricted to Ii and so zx and bx
are constants. The first part of the forcing term has a bhzx component which
is the product of two affine functions and a constant, and the second term
contains h2bx, the product of the square of an affine function and a constant,
so together the forcing term is quadratic. Hence we use Simpson’s rule to
calculate the exact value of the integral

pi =

∫ xi+1/2

xi−1/2

(
−ghbzx +

1

2
gh2bx

)
dx , (9)

to obtain

pi = −
g

6
(bi,lhi,l + 4bihi + bi,rhi,r)(zi,r − zi,l)

+
g

12
(h2i,l + 4h

2
i + h

2
i,r)(bi,r − bi,l).
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So

si =
1

∆xi

[
0

pi

]
.

Note that if w = c then∫ xi+1/2

xi−1/2

(
1

2
gh2b

)
x

dx =

∫ xi+1/2

xi−1/2

(
−ghbzx +

1

2
gh2bx

)
dx .

Hence if we have a still lake condition, w = c and u = 0, then

1

∆xi

(
f̂i+ 1

2
− f̂i− 1

2

)
− (ci,l + ci,r + si) = 0 ,

and so the method is well balanced.

5 Numerical results

In the following numerical tests we use the central-upwind numerical flux
function described by Kurganov et al. [4]. The time stepping algorithm used
is the second order strong stability-preserving Runge–Kutta algorithm [3].
The limiter used is the standard van Leer limiter [6].

Two test cases will be presented. A still lake test case is used to verify that
the scheme is well balanced, and a dam break problem is used to verify that
the well balanced scheme can reproduce the results of the original scheme in
the case of non-steady flow with a shock. The original scheme has already
been validated against analytical solutions by Zoppou and Roberts [9].

5.1 Steady lake tests

Our first test considers a situation with varying width and bed elevation,
with initially constant stage and zero velocity (still lake steady state). The
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numerical results confirm that the new numerical method maintains the steady
state solution.

The numerical domain corresponds to a channel of length 1000m and is
partitioned into 100 intervals. Initial velocity (u) is set to zero. Initial stage
is set to 10m. The width and bed elevation are both defined randomly for
each interval. Each vertex value for z(x) and b(x) (treating the vertex on
each side of an interface separately) is assigned a random value drawn from a
normal distribution with mean 3m and standard deviation 1m. This makes
them both very discontinuous and often very steep within each cell. The
simulation is run to 100 s.

The results of this test using the method without well balancing is shown in
Figure 3 and the results for the well balanced scheme are shown in Figure 4.
The results for the non well balanced scheme are poor. Obviously the numerical
solution is not steady. Clearly this is not a satisfactory solution. In contrast
the well balanced method seems to reproduce the steady state exactly. There
are errors in the velocity on the order of 10−6 but these are negligible.

This kind of width and bed elevation is perhaps not particularly realistic,
especially in terms of the width (one can perhaps imagine some sort of very
jagged rock formation). So problems in the non well balanced method are
greatly exaggerated here. Still it is comforting that even in this extreme case
our well balanced method copes well.

5.2 Radial dam break test

This test is used as a validation of the performance of the new method when
faced with a varying width problem in a more realistic situation. In this test
the solution contains a shock, so we gauge the scheme’s ability to capture
this shock and obtain the correct shock speed.

This test is the same as used by Birman and Falcovitz [2]. Here we use our
one dimensional scheme to solve a two dimensional problem by exploiting its
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Figure 3: Numerical results of unmodified scheme (not well balanced), at
time 100 s, with random width and bed elevation, and initial stage equal
to 10m. Note the unsteady stage and velocity.
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Figure 4: Numerical results of modified scheme (well balanced), at time 100 s,
with random width and bed elevation, and initial stage equal to 10m. Note
the steady stage and zero velocity.
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symmetry. The two dimensional problem is a cylindrical dam break. We get
this situation by setting width to be b(x) = 2πx . Hence, as water flows from
the left, the expanding channel mimics the two dimensional situation.

The length of the channel is set at 100m, we partition the domain into
100 intervals. As mentioned before b(x) = 2πx . Stage is set to be 10m from
x = 0m to x = 50m and elsewhere the stage is set to 2m. The problem is
run until t = 2 s.

As noted by Birman and Falcovitz [2] this problem has no analytic solution
and so we use the solution on a fine grid (of 1000 intervals) as an accurate
approximation to the exact solution. In Figure 5, the results of the original
non well balanced scheme are presented. In particular the results of using
a fine grid of 1000 intervals is compared with the solution obtained using
100 intervals. Similar results, for the new well balanced scheme are presented
in Figure 6. In this non-steady state test case, the results for the well balanced
scheme are essentially identical to the non well balanced scheme.

6 Conclusion

The well balanced scheme presented here is very flexible in that one can use
any numerical flux function satisfying some very common properties. Here we
have used a Central-Upwind type numerical flux along with a Runge–Kutta
time stepping algorithm and a van Leer limiter to provide numerical examples.
These numerical examples show that the scheme is well balanced. Additionally
they show that the addition of the well balancing terms does not degrade the
quality of the solution for non steady-state problems, in particular the shock
speeds remain the same.
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Figure 5: Radial dam test case of varying width non steady flow using original
(non well balanced) scheme. Solution using 100 intervals is given by the black
dots, and solution using 1000 intervals is given by the unbroken line.
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Figure 6: Radial dam test case of varying width non steady flow using the
well balanced scheme. Solution using 100 intervals is given by the black dots,
and solution with 1000 intervals is given by the unbroken line.
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