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A bioinformatic implementation of mutual
information as a distance measure for
identification of clusters of variables
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Abstract

The size of data sets produced in genetic experiments is steadily
increasing. Very often there are many more variables than observations,
leading to the so-called “large p, small n” problem. For such data,
clustering and distance based procedures are useful tools for identifying
groups of variables associated with outcomes of interest. We develop
a novel approach using mutual information as a measure of distance
(here dependency) between probability distributions that is valid for
comparisons between pairs of variables that are both continuous, both
discrete, or one of each. This gives an overall information matrix to
be used as a distance matrix in clustering procedures and to define
a so-called weighted network of associations between variables. We
present computational aspects of implementing our procedures in R.
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1 Introduction

Our approach extends that of Zhang and Horvath [10, 4, 5]. The objective
here is to use network based concepts to describe associations within genetic
datasets, with the goal of identifying groups of genes (which they term
modules) that contain many genes with an above average level of association
with important clinical outcomes. This is done by defining a weighted network
where each gene is conceptualised as a node with the strength of connections
between nodes given by a transformed correlation score (which we replace
with mutual information). We develop our techniques using Zhang and
Horvath’s publicly available F2 intercross dataset containing single nucleotide
polymorphisms (SNPs) and gene expression levels in female mouse liver tissue.
We use the same dataset analysed by Ghazalpour et al. [5] containing 135 mice,
3421 genes and 1065 sNPS. The gene expression levels take continuous values,
whereas the SNPs represent a mutation that has three categorical levels
labelled A, H and B. A and B represent homozygous genotypes, AA and BB
respectively, where A and B are two SNP alleles, H is the heterozygote AB.

Zhang and Horvath’s network and modules were constructed using only
gene expression data. We extend this by directly including SNPs in the
network of associations. Mutual Information (MI), an information theoretic
quantity measuring the dependency relationship between two probability
distributions [1], is proposed as a measure of association for both continuous
and categorical data. Elements of this approach were suggested by Dawys
et al. [2]. MI has the additional advantage of invariance under non-linear
transformations such as rescaling, whereas Pearson and Spearman correlations
only measure linear and monotonic relationships respectively. We show that
it is possible to define a valid MI measure between discrete and continuous
variables and give some advice regarding a tractable implementation in the R
statistical language, serving as an example for improving R computational
performance in general. We aim to develop computational procedures fast
enough for the future application of resampling procedures (such as the
bootstrap) to deal with statistical aspects of our analyses.
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1.1 Information measures

Let X is a discrete random variable with Pr(X = x) = p(x), the entropy of X
is

Zp x) log(p(x)) = —Exllog(p(x))].

For two discrete random variables X and Y with joint probability mass function
Pr(X=x,Y =y) = p(x,y) the mutual information is

P(XJJ) _ (X’ )
=2 Py 1°g< (x p(y)) = Eow {bg( Py )ﬂ @

For continuous variables we replace sums with integrals. For example [1],
bivariate random normal variables with mean zero, common variance and
correlation p have a MI of —% log(1 — p?).

2 A mixture model for the relationship
between a SNP and a gene expression
level

We model the distribution of the continuous variable as a mixture of condi-
tional distributions for each level of the categorical variable.

Let X be a discrete random variable corresponding to the three possible levels
of a sNp. Write Pr(X = x;) = p; for i € {1,2,3}. We prefer to think of X
as a set valued [6] random variable Qx — X := {x1,%2,%x3} = {A, H, B}. Let
Y represent the continuously measured gene expression level with density
and distribution functions fy(y) and Fy(y) (that is, Y : Qy — R). The joint
distribution of X and Y is Fixy)(x,y) with corresponding density fxv)(x,y).
For each x; we have a conditional distribution Y | X = x; with continuous
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density function fyxx—, (y | xi). We assume all integrals exist. This gives
rise to the unusual probability space characterised by the joint distribution
F(X,Y) : (Qx x Qy) — (x x R), which is best thought of as three separate
continuous (conditional) distributions.

We suppose that the density of Y is the mixture

3
= pifly [ x).
i=1

By writing fx(x) = Y, pidy,(x) and f(y | x) = Y0, f(y | xi)8y(x) we
express the joint density as

Zpl [ %:)8y, (),

where 0y, (x) = Lx—y,). It is straightforward to show Proposition 1 (details to
be provided elsewhere).

Proposition 1. The mutual information under this mizture model is

ZmLR (y %)l (ﬂy,xi)>dy- (2)

y f(y)

This result can be interpreted as

I0%Y) = D(f(x,y) |l f(x Zpl f(y [ x:) || £(y)),
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is the Kullback—Leibler divergence from the distribution of random variable X
to the distribution of Y. A similar result was shown by Dawys et al. [2]
although not for our specific mixture model. Our computational approach
solves issues [2] regarding the practical application of these procedures (that is,
our approach can be automated and numerical integration is straightforward
and fast using Simpson’s rule).

3 Nonparametric estimation

Kernel smoothing is a nonparametric approach to the estimation of probability
distributions [9] that requires the choice of a smoothing parameter (also
called the bandwidth). We use kernel approaches as a basis for calculating
MI scores, and automate the procedure by using a data driven ‘Direct plug-in’
estimator to find an optimal bandwidth as proposed by Sheather and Jones [8].
Computational approximations that significantly improve performance were
given by Wand and Jones [9].

3.1 Our first estimator

Our first estimate for (2) uses a non-parametric Gaussian kernel smoother
based on one used by Qiu et al. [7]. For a sample z = z,...,z;, where
|z| = M, is the number of observations of z, one version of the normal kernel
density estimator is

1 = 1 1
- ) Ao [—ﬁ(z—z])ﬂ , 3)

j=1
where h is a smoothing parameter. For continuous samples x and y, the
estimator used in [7] is
Zlog M3 XD [ gz (06— %) + (yi — y;)%)]
25 exp [—qr (% = x)*] 2y exp [z (i — )]

(4)
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Using a similar approach, we estimate each element of the sum (2) by taking
an average of sample kernel estimates

e XD [ 3z (Y — ;)]
e s (5] - |
vx=x |log { e XL; - MZ XD [~z (e — )]

since, by the law of large numbers (LLN), ﬁy‘xzxi — Eyjx—x; a8 n — oco. This
gives our first estimator

Xl

M D ix—y, €XD [—%(yk—yﬂ
_ . log jIX=xi 2n j ‘ 5
;p(x My, ; My X5 exp [~z (Yx — y;)?] ®)

The LLN is required here as this estimator only takes values at the observed
data points, and is in this sense a form of discretisation.

3.2 Full density estimation

As an alternative to (5) we estimate the density along a grid of points using
the well known kernel density estimation methods described by Wand and
Jones [9] and available in the R package KernSmooth.

3.2.1 Binned Kernel Density Estimate

The Binned Kernel Density Estimate (BKDE) uses a Fast Fourier Transform
(FFT) based computational approximation that provides us with additional
advantages [9, Appendix D]. By quantising the data to a regularly spaced
grid of points, convolution operations required to calculate R are computed
quickly by multiplication in frequency space. The inverse FFT then returns
the conditional density estimates £ (y | xi) on a sequence of regularly spaced
points which are quickly integrated using Simpson’s rule. The use of normal
kernels ensures the target density functions are sufficiently smooth. We simply
use this to estimate the density functions f| (y | xi) and plug them into (2),
estimating the p; with observed relative frequencies.
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4 Interpretation of our mutual information
estimators

Our estimators measure the degree of association between a continuous
variable and a grouping factor. We aim for a high MI score when a continuous
variable is clearly separated into groups by the categorical variable, and for
low scores when there is no such relationship. An example from our dataset
is shown in Figure 1. Here we use our second ‘Full Density’ estimation
approach. Figure 1(a) shows three estimated conditional distributions with
little overlap corresponding to a MI score of 0.93. Figure 1(b) shows the
result of a random permutation of the group labels with substantial overlap
of continuous distributions with the low M1 score of 0.03.

5 A brief comparison of our two mutual
information estimators

Two simulated cases are used to compare our estimators. For the first case,
the levels of the SNP easily separate the conditional distributions of the gene
expression level, giving a high MI score. Here the continuous variable is
a mixture of three normal distributions with unit variance and means —5,
0 and 1. The second case is designed to show considerable overlap, using
gamma distributions with means 5, 6 and 7, with variances all equal to 5.
Exact M1 values are calculated by numerically integrating the appropriate
forms of (2) using the R function integrate(). Figure 2 shows boxplots
of estimates over 1000 simulations, with horizontal lines showing the target
values of 1.047 and 0.081 respectively. The LLN based approach (5) is more
accurate when the groups are easily separated; however, it overestimates weak
associations. Due to the considerable noise in genetic datasets, we prefer the
more conservative full density approach.
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FIGURE 1: Interpretation of high and low MI scores: (a) shows the combined
(f(y), black) and conditional (f(y | i), coloured) densities when there is
a strong association between continuous and discrete variables; (b) shows
a low MI resulting from a random permutation of the grouping variable.
This demonstrates how greater divergences D(f(y | xi) || f(y)) correspond to
greater MI.
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F1GURE 2: Comparison of MI estimators for easily separable and overlapping
simulated data

6 Computational issues

Computational tractability influences our analysis decisions. Although R is
a common language choice for statistical and machine learning researchers,
it is an interpreted language that is known to be comparatively slow for
iterative procedures. Code that makes use of built-in vectorised functions
runs substantially faster, with further improvement through the use of a
fast linear algebra library. We use the Automatically Tuned Linear Algebra
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System (ATLAS) as a replacement for R’s non-optimised Basic Linear Algebra
System (BLAS) implementation. The ATLAS compilation process includes a
series of benchmarks to choose the fastest computational kernels for a given
system. We perform timings on an HP desktop with Intel Core2 Duo E8400
3GHz cpu, 4Gb RAM running OpensUSE 11.3 and R 2.12.1 built against
multi-threaded ATLAS 3.8.3 dynamic libraries.

6.1 Interfacing R with C

Computational bottlenecks are identified using the Rprof () profiling function
and replaced with dynamically linked C code. Two R functions are available
for this: .C() and .Call(). The function .C() allows C functions to be
written that refer to R objects via pointers. The function .Call() allows
the direct manipulation of R objects using their internal representation (as
S-Expressions) with direct access to R's memory management and garbage
collection. In general we find the .Call() interface results in faster code
at the expense of increased programming complexity (see Section 6.1.1). It
is also possible within .Call() to directly access the Fortran BLAS (in our
case ATLAS) functions, allowing us to directly translate entire R functions to
compiled code.

6.1.1 Simpson’s rule

We compare four different approaches to numerical integration using Simpson’s
rule. Our baseline is a pure R function making as much use as possible of
vectorised functions. This is compared to inlined C++ code (using the Inline
and Rcpp packages) and C code written using either the .C() or .Call()
interface. A vector of 10001 random standard normal values is used as the
integrand. Table 1 reports the total time taken to integrate this 10000 times
for each of the four methods. The .C() interface is used with the DUP =
FALSE option to avoid unnecessary duplication of objects in memory.
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TABLE 1: Speed comparison for 10000 calculations of Simpson’s rule using
four different implementations
Method Time (Seconds) Speedup

Pure R 41.10 1
Inline C++ 542 8
.CO 0.53 78
.Call() 0.36 114

TABLE 2: Three implementations of the vector dot product for short and
long vectors

Vector length Method Time (Seconds) Speedup
Long X %*hy 9.81 1.0
(n =10001) | crossprod(x,y) 3.12 3.1
.Call() + BLAS 0.93 10.5
Short X %*hy 0.18 1.0
(n=101) | crossprod(x,y) 0.21 0.9
.Call() + BLAS 0.27 0.7

6.1.2 Calling BLAS/ATLAS directly from within .Call()

Vectorised functions are faster in R due to the use of BLAS/ATLAS libraries. To
check that this is still the case when called directly from C code we generate
two vectors of 10001 random standard normal values x and y and compare
the time taken to calculate the dot product x -y 100000 times (Table 2). We
compare the %*% operator with the crossprod() function and a C function
written to make use of Fortran BLAS calls. For the long vectors x and y using
BLAS within .Call() is substantially faster. However we find that interpreted
R code runs faster if x and y are short, say 101 elements in length (Table 2).
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6.2 Mutual information estimators

Our implementations are influenced by the above results. The inclusion of the
three different types of comparison (discrete, continuous, and mixed) results
in the block M1 matrix

afpt

B’ C

Block A holds the continuous versus continuous comparisons, B holds the
continuous versus discrete comparison and C holds the discrete versus discrete
comparisons. Block B is estimated using the methods of Sections 3.1 and 3.2.
Block C is estimated using a straightforward approach implemented with
.CO). We give timings for calculating A, B and C on the full F2 intercross
dataset, in detail:

A We estimate A using a single bandwidth chosen to be the average of all
dpik () density estimation bandwidths for the continuous variables. We
then estimate A with the vectorised version of the fast algorithm of Qiu
et al. [7] and compare performance between a pure R implementation
and complete translation into C using .Call(). Pure R code finds A
in 2.05 minutes whereas a complete translation into .Call() requires
1.79 minutes.

B We estimate B twice, using either the full kernel density approach (Sec-
tion 3.2) or the LLN approach (Section 3.1). MI is calculated for each SNP
against all genes. A pure R implementation of (5) requires 9.15 hours.
The full kernel density version is implemented primarily in R code with
Simpson’s rule and one other loop compiled with C (and using the
bkde () function which makes use of Fortran code). This approach
requires 3.43 hours (non-optimised pure R versions take up to 12 hours).

C We find C by using a direct application of the definition of M1 (1) using
empirical relative frequencies for each pair of SNps. Pure R takes
12.83 minutes; our .C() function takes 5.67 minutes.
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7 Application to mouse data

We simplify the approach of Zhang and Horvath [10] by clustering the observed
MI matrix with minimal transformations. To ensure that the three comparisons
represented by A, B and C are comparable we apply the Context Likelihood
of Relatedness (CLR) algorithm of Faith et al. [3] individually to each of the
submatrices, before applying CLR again to the final matrix. CLR replaces
each MI element with (zi2 + ij)v 2 where z; and z; are row- and column-wise
z-scores respectively. This emphasises unusually high levels of association. We
then simply apply the robust Partitioning Around Medoids (PAM) clustering
algorithm. Choosing the target number of clusters is difficult. At this stage
we simply choose 20 groups as this corresponds to the number of chromosomes
in mice.

Figure 3 shows the resulting PAM clusters. As in the results of Ghazalpour et
al. [5], a group with disproportionate association with weight is clearly visible.
The red and blue lines show the upper tertile and quartile of all CLR scores
ignoring the clusters. Our technique gives qualitatively similar results despite
Ghazalpour et al. [5] only considering the continuous gene expression values
for the network and clustering.

8 Conclusion

We developed an approach that uses mutual information to identify continuous
variables strongly associated with categorical variables and successfully applied
this to a biological dataset. There is a clear group within the data that appears
to be associated with weight. This signal is strong enough to be apparent using
different procedures as demonstrated by the agreement of our results with
those of Ghazalpour et al. [5] even though they only used the gene expression
data. By including SNPs in the clustering we extend their approach. We
also showed that is it possible to calculate relevant quantities in reasonable
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FIGURE 3: CLR between elements in each cluster and body weight for the
F2 mouse intercross data. A CLR is calculated between weight and each SNP
or gene. Each boxplot shows these CLR scores within a given cluster. The
red and blue lines show the upper tertile and quartile (respectively) of the
combined data ignoring clusters.

time by writing the computational kernels in low level C called from more
user friendly high level R functions, outlining some general approaches for
improving computational performance.
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