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A GMRES(m) method with two stage
deflated preconditioners
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Abstract

The gmres(m) method is often used to compute Krylov subspace
solutions of large sparse linear systems of equations. Morgan developed
a new procedure that deflates the smallest eigenvalues and improves
the eigenvalue distribution. Several preconditioning techniques have
been explored in numerous research papers. In particular, the deflated
gmres proposed by Erhel and others replaces the smallest eigenvalues
of the original coefficient matrix of the linear system with the largest
modulus of the eigenvalues. We explore a new deflated gmres which
uses a two stage deflation technique. Further, the results of the
numerical experiments for test matrices are tabulated to illustrate that
our approach is effective in solving a wide range of problems.
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1 Introduction

gmres [10] is used to solve large sparse nonsymmetric linear systems of
equations expressed as

Ax = b , A ∈ Rn×n, x,b ∈ Rn. (1)

It is natural to consider that the convergence of gmres depends on the
distribution of eigenvalues of the coefficient matrix A, and that the existence
of small eigenvalues slows down the convergence of gmres. The convergence
of gmres occurs as though the small eigenvalues were removed from matrix A.
This phenomenon is called superlinear convergence [11]. The Restarted gmres
method, with restart frequency m, is usually known as gmres(m). This
method is commonly used, because the full gmres significantly increases
computation cost and memory requirements as the number of iterations
proceed. Unfortunately, the convergence of gmres(m) is inferior to that of a
full gmres, because the information of eigenpairs, especially small eigenpairs,
is lost when it is restarted. The convergence of gmres(m) behaves as though
the information of the small Ritz values is not retained.

Recently, we succeeded in developing several procedures that improve the
convergence of gmres(m). One of our new techniques employs deflation. De-
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flation is when an invariant subspace corresponding to the smallest eigenvalues
is approximated, and the influence on the components of the residual vector
is eliminated. There are two types of deflation techniques. One of them is
Morgan’s Deflated gmres(m,k) [5, 9], which is mathematically equivalent to
gmres-e [6] and gmres-ir [7]. Morgan’s technique accelerates convergence
by approximating small eigenvalues.

The technique explored in this article adds an invariant subspace corresponding
to the smallest eigenvalues to the Krylov subspace of the next gmres cycle.
An alternative deflation technique is to accelerate convergence by removing
small eigenvalues. This is executed by constructing a preconditioner as
proposed by Erhel et al. [3], Baglama et al. [1], and Burrage et al. [2]. In this
technique, the smallest eigenvalue of the coefficient matrix A in equation (1)
replaces the largest modulus of the eigenvalues. In both aforementioned
techniques, the information of small eigenpairs is retained when it is restarted,
and the superlinear convergence is maintained.

Our proposal is a modification of techniques derived from Deflated gm-
res(m,k) [5] and deflgmres(m, l) [3]. Our preconditioning technique was
derived from Deflated gmres(m,k) and the technique for constructing a
preconditioner was derived from deflgmres(m, l). We refer to this new
method as Deflated gmres(m,k, l). This new method is compatible with
Deflated gmres(m,k) and the algorithm is very simple and easy to program.

Section 2 overviews Deflated gmres(m,k) and its pros and cons. Section 3
details our new method, Deflated gmres(m,k, l). Section 4 tabulates and
analyzes the results of numerical experiments for a representative set of
matrices. Section 5 concludes.

2 Deflated GMRES(m,k)

gmres is normally used to solve a large sparse nonsymmetric system of
linear equations (1). gmres is one of the Krylov subspace methods based
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on the Arnoldi process. An approximate solution is chosen from the Krylov
subspace Km(A, r0) to minimize the residual norm

xm ∈ x0 + Km(A, r0) such that ‖rm‖→ min ,

where
Km(A, r0) = span{r0,Ar0, . . . ,Am−1r0}.

The Arnoldi method creates an orthonormal basis {v1, . . . , vm} for the Krylov
subspace, and an (m+ 1)×m upper Hessenberg matrix H̄m such that

AVm = Vm+1H̄m where Vm = [v1, . . . , vm].

An approximate solution, where the residual norm is minimized, is computed
to solve the following least square problem

xm = x0 + Vmdm , and dm = argmind ‖βe1 − H̄md‖,

where β = ‖r0‖. The computational cost and memory requirements of this
process increases significantly with the number of iterations. The restarted
version of gmres is often used to address these issues and this method is
called gmres(m).

Recently, a number of techniques to improve the convergence of gmres(m)
were developed. In 2002, Morgan [5] developed Deflated gmres(m,k). This
method computes the information about the small eigenpairs at each restart,
and carries them forward to the next cycle. The property of superlinear
convergence is retained by approximating the small eigenvalues rapidly. To
be more precise, k harmonic Ritz vectors z1, . . . , zk [8] are computed at each
restart and added to the subspace of the next cycle. This subspace is extended
to dimension m + 1 from the current residual vector r0 with the Arnoldi
method. This subspace is

span{z1, . . . , zk, r0,Ar0, . . . ,Am−k−1r0}.

Morgan [5] showed that this subspace maintains the Krylov subspace.
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3 Deflated GMRES(m,k, l)

This section explores a technique which applies an additional precondition-
ing stage to Deflated gmres(m,k). Algorithm 1 lists the proposed algo-
rithm, called Deflated gmres(m,k, l). In the first stage [2, 3], the precondi-
tionerM−1 is applied to the original system of linear equations Ax = b , where
M−1 = In +U(|λn|

−1T−1 − Il)U
T . In the second stage, Deflated gmres(m,k)

is applied to the equation AM−1y = b , x =M−1y to expedite solving the
system of linear equations (1). The proposed method provides a good approx-
imation for the smallest eigenvalues rapidly and accelerates the convergence
rate of Deflated gmres. The procedure for constructing the preconditioner
is based on a deflgmres(m, l) technique, which was developed by Erhel et
al. [3]. This technique replaces the largest module of the eigenvalues with l,
the smallest eigenvalue of the system of linear equations (1). l harmonic Ritz
vectors corresponding to the smallest harmonic Ritz values instead of l Schur
vectors were used, and maximum harmonic Ritz values were used instead of
maximum Ritz values. We used harmonic Ritz pairs in both the deflated
procedure and the preconditioner. This method is compatible with Deflated
gmres(m,k) and it is easy for programmers to implement this method.

4 Numerical experiments

Numerical experiments illustrate the effectiveness of Deflated gmres(m,k, l).
A celsius J360 computer with a 4 Gbyte main memory was used. Algorithms
were implemented in the C programming language with double precision. The
initial approximation was set to x0 = 0 , and the gmres solvers were stopped
when the relative residual norm was reduced at least by a factor of 10−12,
that is ‖rm‖2/‖r0‖2 < 10−12.



4 Numerical experiments C227

Algorithm 1: Deflated gmres(m,k, l).

choose x0 ;1

set M−1 = In, itr = 0 ;2

compute r0 = b−Ax0 ;3

compute xm ∈ x0 +M−1Km
(
AM−1, r0

)
s.t. ‖rm‖→ min ;4

if ‖rm‖ < ε then5

stop6

end7

set itr = itr + 18

compute eigenpairs (θi,gi) of Hm + h2m+1,mH
−T
m eme

T
m9

if itr = 1 then10

orthonormalize Vmg1, . . . ,Vmgl to form u1, . . . ,ul ;11

set Tl = U
T
lAUl ;12

set M−1 = In +Ul
(
|θm|T

−1
l − Il

)
UTl ;13

set x0 = xm and goto 3 ;14

else15

orthonormalize Vmg1, . . . ,Vmgk to form z1, . . . , zk ;16

set Km = span{z1, . . . , zk, rm,Arm, . . . ,Am−k−1rm} ;17

set x0 = xm and goto 4 ;18

end19

4.1 First test problem

Consider the system of linear equations (1), where the coefficient matrix A
and the right-hand vector b are

A =



1 1

−1 2 1

−1 3 1
. . . . . . . . .

−1 n− 1 1

−1 n


, b =



1
...
...
...
...
1


.
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Table 1: Results of Deflated gmres(m,k, l) for Test problem 4.1: the left
side values (itr) are the numbers of iterations; the right-hand side values (sec)
are the computation times.
k l = 0 l = 1 l = 2 l = 3 l = 4

itr sec itr sec itr sec itr sec itr sec
0 14800 751 - - - - - - - -
1 11833 1187 10370 1079 5594 602 3314 355 4946 525
2 9708 1009 8399 921 5340 586 5110 560 5018 566
3 7219 802 6518 739 5264 587 5066 584 5616 655
4 6304 719 5951 701 4985 596 4397 528 3137 386
5 5645 686 5170 619 5070 627 4610 555 4590 557
6 5155 641 4990 634 4724 599 4135 531 4021 520
7 4831 633 4406 582 4586 606 4334 579 3886 505
8 4581 625 4164 570 3977 549 4045 563 3994 546
9 4409 619 3762 532 3586 507 3938 561 3890 556
10 4300 630 4100 598 4025 567 4130 607 3755 550

The size of matrix A is n = 65536 and the restart frequency is set to m = 25 .
We show the results of numerical experiments for Test problem 4.1 in Table 1.
The left-hand side values (itr) are the numbers of iterations and the right-hand
side values (sec) are the computation times. Deflated gmres(m,k, l) is run
as Deflated gmres(m,k) when l = 0 , and as gmres(m) when k = 0 and
l = 0 . The convergence of our proposed method was significantly faster than
that of conventional methods. Markedly better results were obtained when
(k, l) = (1, 3), and (4, 4).

A comparison of the convergence of gmres(25), Deflated gmres(25, 4) and
Deflated gmres(25, 4, 4) was made. Figure 1 displays the convergence be-
haviour of the relative residual norm of the above methods.

The distribution of eigenvalues at 1000 iterations is displayed in Figure 2(b).
The convergence of our proposed method can accelerate rapidly because the
smallest harmonic Ritz values provide good approximations for the smallest
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(a) time versus relative residual norm

(b) iteration versus relative residual norm

Figure 1: The convergence behaviour of the relative residual norm for Test
problem 4.1.
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(a) Deflated gmres(25, 4)

(b) Deflated gmres(25, 4, 4)

Figure 2: The distribution of eigenvalues at 1000 iterations for Test prob-
lem 4.1: ♦, deflated eigenvalues; ◦, positive eigenvalues.
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Table 2: Results of Deflated gmres(m,k, l) for Test problem 4.2: The
left-hand side values (itr) are the numbers of iterations; the right-hand side
values (sec) are the computation times.
k l = 0 l = 1 l = 2 l = 3 l = 4

itr sec itr sec itr sec itr sec itr sec
0 - - - - - - - - - -
4 - - - - - - 19374 318 19144 319
5 20705 324 - - 19000 314 18145 305 18685 318
6 14746 238 11232 188 - - - - - -
7 - - 11796 202 14720 257 - - 11108 199
8 12272 209 14296 253 - - - - - -
9 - - - - 11662 215 17894 334 15393 292
10 21890 395 16940 317 13780 261 12620 242 25420 494

complex eigenvalues of the matrix A.

4.2 Second test problem

For our second example we consider a Dirichlet boundary value problem
defined by a partial differential equation discussed by Joubert [4]:

−∆u+D
[
(y− 1

2
)ux + (x− 1

3
)(x− 2

3
)uy
]
− 43π2u = G on Ω = [0, 1]2,

u(x,y) = 1+ xy on ∂Ω ,

where G(x,y) is chosen so that u(x,y) = 1+ xy . We discretised the above
equation with mesh size 1/(27 + 1), using a five point, central difference
scheme and this resulted in a linear system of equations (1) with a coefficient
matrix A of size n = 16384 . Table 2 shows the results of some numerical
experiments for Test problem 4.2.

The convergence of our proposed method was often faster than that of
conventional methods, and succeeds in cases that the conventional methods
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(a) time versus relative residual

(b) iteration versus relative residual

Figure 3: The convergence behaviour of the relative residual norm for Test
problem 4.2.
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(a) Deflated gmres(50, 10)

(b) Deflated gmres(50, 10, 3)

Figure 4: The distribution of eigenvalues at 4000 iterations for Test prob-
lem 4.2: ♦, deflated eigenvalues; ◦, positive eigenvalues; ∗, negative eigenvalue.
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were unable to solve, that is, k = 4 , 7 and 9. However, the convergence of our
proposed method was sometimes slower than that of conventional methods,
that is, when k = 8 . Figure 3 compares the convergence behaviour of residual
norms for gmres(50), Deflated gmres(50, 10) and Deflated gmres(50, 10, 3).

The distribution of eigenvalues at 4000 iterations is shown in Figure 4. Note
that the modulus of negative eigenvalues are plotted in the positive domain.
Figure 4(b) shows the convergence of our proposed method can accelerate
rapidly, because the smallest harmonic Ritz values approximates the smallest
complex eigenvalues in matrix A. On the other hand, gmres(m) does not
converge because it cannot approximate the small complex eigenvalues and
the Deflated gmres(m,k) method converges by approximating the small
complex eigenvalues at around 15000 iterations.

5 Conclusions

The new technique we explore in this article is the Deflated gmres(m,k, l)
method, which is a modification of the Deflated gmres(m,k) method pro-
posed by Morgan [5]. The procedure of constructing the preconditioner is
based on a deflgmres(m, l) technique proposed by Erhel et al. [3]. In our
proposed method, the approximation is better than conventional methods,
because harmonic Ritz vectors are used in the deflating procedure and con-
structing a preconditioner. Our proposed method is compatible with Deflated
gmres(m,k) and its computation scheme is easily implemented.

Our numerical experiments show the effectiveness of Deflated gmres(m,k, l).
In both Test problems 4.1 and 4.2, the convergence of Deflated gmres(m,k, l)
is usually faster than that of conventional methods. Test problem 4.2 shows
our proposed method was able to solve problems that conventional methods
could not solve, and it was able to accelerate the convergence of the residual
norm, because it quickly formulated a better distribution of eigenvalues
through our proposed two stage preconditioning.
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