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Swelling problems with two moving
boundaries.
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Abstract

The swelling of grease and whole grains are modelled by a non-
linear diffusion equation with two moving boundaries (a Stefan prob-
lem). In Cartesian coordinates interesting analytical solutions exist
for some simplified cases, but in general the solution must be found
numerically. In cylindrical coordinates only numerical solutions are
possible and these need the Cartesian results. This article develops
models of the swelling material, illustrates some of the analytic so-
lutions, and demonstrates the numerical methods used to solve the
problem in Cartesian and cylindrical coordinates.
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1 Introduction

A Stefan problem [6, 8] with two moving boundaries is well posed by the
non-dimensional equations

∂u

∂t
= ∇(D(u)∇u), x ∈ [S(t), R(t)] , (1)

dR

dt
= a

∂u

∂r

∣∣∣∣
x=R

, (2)

dS

dt
= −b ∂u

∂r

∣∣∣∣
x=S

, (3)

where u(r, t) is a function of distance, r, and time, t, with initial condi-
tion R(0) = S(0) , and boundary conditions u(S, t) = 0 and u(R, t) = 1 . The
diffusivity term D(u) may be nonlinear and is often written as D = exp(mu)
for a constant m. No initial condition for u(r, t) is needed since at t = 0 the
solution domain is the singular region, r ∈ [R(0), R(0)] . The parameters a
and b are constants that relate to the physical properties of the material.
Figure 1 illustrates the problem schematically.

This type of equation occurs in the modelling of swelling materials such
as whole grains [7, 9]. Our primary motivation is to model the swelling of a
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x = S(t) x = R(t)

← →

← →

S′(t) =−b∂u
∂ r (S) R′(t) = a∂u

∂ r (R)

∂u
∂ t = ∇(D(u)∇u)

u = 0 u = 1

unswollen swollen water

wool

Figure 1: Schematic diagram of a Stefan problem with two boundaries,
r = R(t) , r = S(t) , moving in opposite directions. Diffusion occurs between
the boundaries, while the movement of the boundaries are governed by rate
equations.
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grease layer on a wool fibre during the wool scouring process [1, 2, 3, 4, 5]
since a better understanding of the time for grease to swell could be used to
improve scouring efficiency.

The governing equations are derived by Barry & Caunce [2], as well as
in slightly different form by Davey et al. [7, 9], for water diffusing into a
polymer. The dependent variable in this case would be φ, the moisture
volume fraction, φ ∈ [0, 1] with φ = 1 for water, and φ = 0 representing
no water in the unswollen polymer. At the edges of the domain, r = S(t)
and r = R(t) , the volume fractions are φ = φ0 and φ1 representing physical
swollen and unswollen limits for the material. The diffusion equation governs
movement of the moisture, with the rate equations, R′(t) and S ′(t), derived
by integration across the boundary [2, 7]. To obtain the equations (1–3)
variables are scaled with respect to φ1, a length scale x0 and a time scale
t0 = x2

0/D
∗(φ1) . This scaling gives two constants:

a =
φ1 − φ0

1− φ1

, b =
D∗(φ0)

D∗(φ1)

φ1 − φ0

φ0

. (4)

with D∗ being the diffusivity in dimensional quantities.

Most previous work on Stefan problems studied cases where one boundary
is fixed or infinite and one boundary moves, such as occurs in many freezing
or melting problems. The literature of these cases is well documented by
Crank and Hill [6, 8].

The results presented here build on the work of Davey et al. [7, 9] who
considered pseudo steady-state solutions, and Barry & Caunce [2] who looked
at analytic and numerical solutions in Cartesian geometries. Some of the
detailed derivations will be left to these earlier works, while the major results
are reproduced for completeness. The aim of our work is to extend our earlier
results [2] to cylindrical coordinates and to explore numerical solutions for
the more realistic case of nonlinear diffusivity, D(u) = exp(mu) . We also
explore solutions when the left moving boundary, r = S(t) , reaches a fixed
boundary such as impermeable wool or the centre of the grain, r = 0 .
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2 Transformed equations

The governing equations (1–3) are transformed using

z(r, t) =
r − S(t)

R(t)− S(t)
, (5)

so that the region between the two moving boundaries is fixed as z ∈ [0, 1] .
Hence writing u(r, t) = U(z, t) gives

∂U

∂t
=

1

(R− S)2

(
D(U)

∂2U

∂z2
+D′(U)

(
∂U

∂z

)2

+ αD(U)
∂U

∂z

(R− S)

(z(R− S) + S)

)
+

(
S ′ + (R′ − S ′)z

R− S
)
∂U

∂z
, (6)

dR

dt
=

a

R− S
∂U

∂z

∣∣∣∣
z=1

,
dS

dt
=
−b

R− S
∂U

∂z

∣∣∣∣
z=0

, (7)

with U(z = 0, t) = 0 , U(z = 1, t) = 1 , R(0) = S(0) = α . These equations
are in cylindrical coordinates if α = 1 and Cartesian if α = 0 .

Barry & Caunce [2] showed that in the Cartesian situation exact solutions
exist where u(z(t), t) = U(z(t)) only. The difficulty lies in finding U(z) which
is governed by the equation

d

dz

(
D(U)

dU

dz

)
= −aUz(1)((1 + γ)z − γ)

dU

dz
, (8)

with U(0) = 0 , U(1) = 1 and γ = bUz(0)/[aUz(1)] . This is a complicated
nonlinear equation to solve, due not only to the diffusivity nonlinearity D(U),
but also because of the terms Uz(0) and Uz(1) which are unknowns. With
this symmetry the boundary positions exhibit the classic

√
t dependence:

R = cr
√
t , where cr =

√
2aUz(1)

1 + γ
, (9)
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S = −cs
√
t , where cs =

√
2bγUz(0)

1 + γ
= γcr , (10)

where cr and cs are constants. To find Uz(1) and Uz(0) is difficult and
numerical methods are usually needed. However, some semi-analytic implicit
solutions [2] exist for some restrictive cases, such as D = 1 , a = b , where

U =

∫ z
0

exp
[−aUz(0)(w2 − w)

]
dw∫ 1

0
exp

[−aUz(0)(w2 − w)
]
dw

, (11)

and

Uz(0) =
1∫ 1

0
exp

[−aUz(0)(w2 − w)
]
dw

(12)

is an implicit equation with relatively simple numerical solution.

3 Numerical Method

Equation (6) is solved using central second order, finite differences for the
spatial derivatives and a first order, forward difference for the time derivative
(an Euler time-step). Hence equation (6) is written as

U(zi, t+ dt) = U(zi, t) + dtf [U(zi−1, t), U(zi, t), U(zi+1, t), S(t), R(t)] ,

where zi are the N discretised spatial points for i = 1, . . . , N ; dt is the
time step; and f the complicated discretised right-hand side of equation (6).
Similar expressions are derived for equations (7). The time step, dt, is contin-
uously modified with the maximum possible dt chosen so that the solution
remains stable. For example, in the initial stages when the boundary is
moving rapidly, the time step is kept small, then increased as the boundary
velocity slows down. In general the Cartesian situation is more stable as the
cylindrical model has an additional advection-like term which can cause a



3 Numerical Method C125

numerically induced mass loss through the boundary if the time step is too
large.

The difficulty in these schemes is finding the initial condition, since at
time t = 0 there is no region in which to solve and equation (6) has singu-
larities where R − S = 0 . In the Cartesian case the routine is begun with
R − S = ε � 1 , and U(z, t) = z . This approximation is stepped forward
in time until U(z, t) → U(z) . This solution can be checked by re-running
the code from R − S = ε since U(z) should remain unchanged over time.
This procedure can also be checked against analytic solutions [2]. When S(t)
reaches the boundary at q the boundary condition is changed to ∂U/∂z = 0
at S(t) = q and the Euler time step continued until saturation.

The cylindrical case requires additional steps since no U(z, t) → U(z)
solution exists. However, in the limit as t → 0 the cylindrical governing
equations reduce to the Cartesian equations since the cylindrical term

αD(U)
∂U

∂z

(R− S)

(z(R− S) + S)
(13)

in equation (6) becomes zero if R−S → 0 . This is expected since in this limit
a thin cylindrical shell appears as locally planar. Hence the initial condition
for the cylindrical model is the U(z) solution from the Cartesian model.

Even though the initial condition U(z, t→ 0) has been found, the solution
still needs a region in which to start. Initially the left boundary is set as
S(t ≈ 0) = 1 − ε . The position of R(t ≈ 0) is then defined by conservation
of solid mass, 1 − φ . The solid mass is calculated as unswollen mass mu ,
swollen mass ms, and initial mass m0, where mu +ms = m0 or as integrals∫ S(t)

q

(1− φi)2πr dr +

∫ R(t)

S(t)

(1− φ(r, t))2πr dr =

∫ R(0)

q

(1− φi)2πr dr .

The initial radius of the grease is the known R(0). The swollen mass can
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then be written in terms of nondimensional variables as

ms =

∫ R(t)

S(t)

(1− φ(t))2πr dr (14)

= 2π

∫ 1

0

(1− U(z, t)(φ1 − φ0) + φ0)(z(R− S) + S) dz(R− S) (15)

= π(1− φ0)(R
2 − S2)

−2π(φ1 − φ0)

[
(R− S)2

∫ 1

0

zU(z, t) dz + (R− S)S

∫ 1

0

U(z, t) dz

]
.

(16)

Re-arrange this to find

R(t) =
1

φa

(
S(φa − φb)−

√
(Sφb)2 +

msφa
π

)
, (17)

where

φa = (1− φ0)− 2(φ1 − φ0)

∫ 1

0

zU(z, t) dz , (18)

φb = (1− φ0)− (φ1 − φ0)

∫ 1

0

U(z, t) dz , (19)

are convenient shorthands. Writing ms = m0 −mu gives

ms = π(1− φi)(R(0)2 − S2) , (20)

noting that by scaling R(0) = 1, which is then substituted into equation (17).

Hence substituting U(z, 0) = U(z) and S = 1 − ε gives a required esti-
mate for the initial position of R . This same procedure can be done for the
Cartesian case, although since U(z, t) → U(z) then R(t) and S(t) can be
found, using equations (9) and (10), up to when S(t)→ q .
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This same mass balance can be used to find the final swelling radius by
substituting U(z,∞) = 1 and S = q to obtain

R(∞) =

√
1− φi
1− φ1

− q2
φi − φ1

1− φ1

. (21)

An important and practical outcome of this analysis is the time for the
material to swell. Numerically this is defined as when u(S(t), t) = 0.99 , that
is when the inner-most region has swollen to within one percent of its final
value.

A scaling argument can also be used to estimate the swelling time where
the typical time scale is

ts =
(R(∞)− q)2

D(1)
= (R(∞)− q)2 , (22)

where scaling implies D(1) = 1 . This is the ‘typical non-dimensional’ time
for the material to swell completely.

4 Results

All the results shown are calculated with typical values of φi = 0 initially,
φ0 = 0.6 when the grease begins to swell at S and φ1 = 0.8 when the grease
is fully swollen. The dimensional diffusion coefficient

D∗(φ) = ecφ , → D(u) = eν(u−1) , (23)

where c = 5.22 [7] and hence ν = c(φ1 − φ0) = 10.44 .

Figure 2 shows the boundary positions as a function of time for two
different wool widths q = 0.5 and q = 0.05 . The S(t) boundary can be
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seen to progress to the q limit and then stop. The R(t) boundary progresses
uniformly to the maximum value calculated in equation (21). Also worth
noting is that S(t) accelerates near r = 0 due to the diminished volumes for
small r (that is 2πr dr decreases). Hence the volume of fluid diffusing through
the medium pushes the S(t) boundary further and faster. Once the boundary
q is reached the boundary at R(t) slows down. This is not intuitively obvious
but occurs because the motion of the S(t) boundary helps drive the flow.

In Figure 3 the moisture fraction U(z, t) is shown as a function of z
for different times. In the Cartesian case the curves for small time, those
bounded by U(0, t) = 0 and U(1, t) = 1 , would be the one curve U(z, t) =
U(z) identical to the t = 0 curve shown in Figure 3. In this cylindrical case
U(z, t) slowly changes for the early times, and when the boundary at q is
reached the boundary condition changes and the moisture fraction increases
to eventual saturation.

Figure 4 shows the grease swelling time as a function the nondimension-
alised thickness of the wool fibre, q. Equation (22) gives the approximation
for the time to fully swell the grease. The partial swelling time is numeri-
cally found when S(t) reaches q. We note that by symmetry, rotation of the
S(t) curve in Figure 2 gives this partial swelling time as a function of q. The
full swelling time is calculated numerically by finding when U(s(t), t) = 0.99 .
The x-axis of this figure corresponds to the proportion of grease, hence when
1 − q = 1 then no wool fibre exists and the cylinder is all grease. This is
physically equivalent to the wheat and rice swelling cases. When 1 − q = 0
there is little material to swell, hence swelling time is zero. Note that plotted
is non-dimensional time, which has been scaled with respect to initial wool
and grease radius.
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Figure 2: Boundary positions versus time for two non-dimensional wool
widths, q = 0.5 and q = 0.05 .
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Figure 3: Moisture fraction U(z, t) as a function of z for different times.
Note the change in behaviour when the boundary S(t) reaches S = q and
the boundary condition changes from u = 0 to ∂u/∂z = 0 .
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Figure 4: Time for a material to swell versus scaled width of grease. Equa-
tion (22) gives the estimated time.
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5 Conclusion

We developed numerical and analytic methods to analyse diffusion between
two moving boundaries, a model of swelling grease on a wool fibre. The
numerical solution involves applying a boundary-fixing transformation and
using finite differences. The difficulty lies in finding the initial condition with
which to begin the numerical iteration. We found that the Cartesian solution
is invariant in time, hence allowing easy calculation, and this solution was
the initial condition for the cylindrical problem. These solutions allowed
estimates of the swelling time to be made as a function of grease depth.
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