
ANZIAM J. 48 (CTAC2006) pp.C203–C217, 2007 C203

Automatic elliptic grid generation by an
approximate factorisation algorithm

E. Ly1 D. Norrison2

(Received 14 July 2006; revised 01 July 2007)

Abstract

A procedure for automatic numerical generation of a structured
grid system with coordinate lines coinciding with all boundaries of a
general two-dimensional region containing a body of arbitrary shape
is presented. The solution procedure incorporated the method of false
transients and the approximate factorisation algorithm, where a se-
quence of time steps is cycled in a geometric fashion with repeated
endpoints, and has a capability for clustering grid lines close to the
body. The procedure requires significantly much less computational
effort to obtain a converged solution than a point or line successive
over-relaxation iterative scheme. Although, the superiority of the pre-
sented algorithm has been demonstrated for the grid generation prob-
lem, it can be utilised for other problems requiring the solution of a
set of elliptic partial differential equations of similar nature.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/48
for this article, c© Austral. Mathematical Soc. 2007. Published July 9, 2007. ISSN
1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/48

Contents C204

Contents

1 Introduction C204

2 Grid generation equations C205

3 Numerical solution procedure C206

4 Computational examples C209

5 Concluding remarks C214

References C215

1 Introduction

In order to solve the governing partial differential equations (pdes) of fluid
dynamics numerically, approximations to the partial differentials are intro-
duced. Commonly employed numerical methods for solving the pdes re-
quired all partial derivatives to be converted into finite difference equations
(fdes), which are solved at discrete points within the domain of interest.
Therefore, a set of grid points within and on the boundaries of the domain
is required to be specified to form a grid system. This process is known as
grid generation [2, 8], which is the focus of this article.

We describe one of several common methods for generating smooth grids
for odd geometries, namely the elliptic grid generation method, which is
used to generate a two-dimensional boundary-fitted coordinate system with
quadrilateral elements. This work is confined in two dimensions in the inter-
est of simplicity of the theory, but in principle it can be extended to three
dimensions. We let the curvilinear coordinates be the solution of a system of
elliptic pdes with source terms, subjected to Dirichlet boundary conditions

2 Grid generation equations C205

on all boundaries [2, 6, 8]. The source terms provide an option for clustering
of grid line(s) or point(s), or even a combination of both, in a specified re-
gion of the domain. One coordinate is specified to be constant on each of the
boundaries, so that there is a coordinate line coincident with each bound-
ary. A finite difference based method, incorporating the method of false
transients and the approximate factorisation (af) algorithm [1, 3, 4, 5, 9],
solves the pdes in the computational domain for the physical coordinates of
the grid points [6, 8]. In closure, grids around a body of irregular shape are
generated, and the convergence rate of the proposed numerical solution pro-
cedure are compared with that of the point (psor) and line (lsor) successive
over-relaxation iterative schemes.

2 Grid generation equations

The mapping process from the physical coordinates r = (x, z) to the com-
putational coordinates ϑ = (ξ, ζ) is described by the relation ϑ = ϑ(r) ,
which is assumed to have continuous derivatives of all orders. In order to
generate an applicable grid, the mapping must be one-to-one to ensure the
grid lines of the same family do not cross each other, and provides a smooth
grid distribution with minimum skewness.

The following system of Poisson’s equations is considered,

ϑxx + ϑzz = S(ϑ) , (1)

where S = (p, q) contains the source terms. As usual, ϑx and ϑxx denote
∂ϑ/∂x and ∂2ϑ/∂x2, respectively. Grid point clustering is enforced by proper
selection of the functions p(ϑ) and q(ϑ), and the selection is based on grid
point or line attraction in the vicinity of defined grid line(s) or point(s), or
even a combination of both. Since it is more convenient to solve for r, where
ϑ is known in the computational domain, the dependent and independent

3 Numerical solution procedure C206

variables of Equation (1) are interchanged to provide(
αrξξ + Prξ

)
− 2βrξζ +

(
γrζζ +Qrζ

)
= 0 , (2)

where 0 is a zero vector. The constants in Equation (2) are

α = rζ · rζ , β = rξ · rζ , γ = rξ · rξ , (3)

where · represents the dot product of two vectors, and the source terms are

P =
p

J2
, Q =

q

J2
, J =

1

xξzζ − xζzξ
, (4)

where J is the Jacobian of transformation. The solution to Equation (2) is
periodic in ξ due to the existence of a re-entrant boundary that formed the left
and right boundaries of the computational domain. Since the system is quasi-
linear, a linearisation process must be used in the numerical solution. For
simplicity, a lagging of the coefficients (3) is employed, with the coefficients
evaluated at the previous iteration or time level [2, 8].

3 Numerical solution procedure

Here we discuss an efficient af algorithm, together with the method of false
transients, for solving the elliptic pde system defined by Equation (2). An
artificial time dependent term, rτ (where τ is the artificial time scale), is
appended to (2) to incorporate the temporal numerical dissipation, hence
resulting in

rτ =
(
αrξξ + Prξ

)
− 2βrξζ +

(
γrζζ +Qrζ

)
. (5)

Since the boundary conditions are time independent for a static grid system,
and provided that the numerical solution converges, we anticipate that rτ ap-
proaches zero. The price paid is the loss of a true transient solution, but this

3 Numerical solution procedure C207

Table 1: Well-known time difference rules for Equation (6).
Time difference rule a b

Trapezoidal rule 0 1/2
Euler implicit 0 1
Three-point backward 1/2 1
Euler explicit 0 0
Leap frog −1/2 0

is not significant, since the objective of this work is to develop a numerical
scheme that will generate the final solution at an enhanced convergence rate.

Let τ be discretised as τ ≡ τn = n∆τ , where ∆τ is a discrete increment
of τ and n the iteration or time level, and r(τn) = r(n∆τ) = rn . Here the
spatial dependence has been temporarily suppressed. The time derivative
is approximated by a general time difference rule of a form suggested by
Warming and Beam [9], which includes the rules presented in Table 1,(

∂r

∂τ

)n
=

(1 + a)
−→
∆τ − a

←−
∆τ

∆τ (1 + b
−→
∆τ)

rn +
(
b− a− 1

2

)
O(∆τ) +O(∆τ)2 , (6)

where
−→
∆τ and

←−
∆τ are the forward and backward time difference operators.

Inserting (6) into (5) for rτ at time level τn provides(
1−∆τ̃L

)−→
∆τr

n = ã
←−
∆τr

n + ∆τ̃
ω

b
Rn +

(
b− a− 1

2

)
O(∆τ)2 +O(∆τ)3 , (7)

where ω is a relaxation factor,

∆τ̃ =
b∆τ

1 + a
, ã =

a

1 + a
, (8)

with a 6= −1 , and Rn denotes the residual, which measures how well the
fdes are satisfied by the approximate solution at time level τn,

Rn = Lrn =

[(
αn

∂2

∂ξ2
+P n ∂

∂ξ

)
− 2βn

∂2

∂ξ∂ζ
+

(
γn

∂2

∂ζ2
+Qn ∂

∂ζ

)]
rn . (9)

3 Numerical solution procedure C208

In general, the operator appearing on the left side of (7) is difficult to in-
vert. Therefore, in the af algorithm it is chosen as a product of two or more
factors, such that it closely resembles the operator L where only simple ma-
trix operations are required, by neglecting all mixed derivatives and omitting
third and higher order terms in ∆τ ,[

1−∆τ̃

(
αn

∂2

∂ξ2
+ P n ∂

∂ξ

)][
1−∆τ̃

(
γn

∂2

∂ζ2
+Qn ∂

∂ζ

)]
−→
∆τr

n

= ã
←−
∆τr

n + ∆τ̃
ω

b
Rn . (10)

The factored equation (10) is then solved in an alternating direction manner,[
1−∆τ̃

(
αn

∂2

∂ξ2
+ P n ∂

∂ξ

)]
∆r∗ = ã

←−
∆τr

n + ∆τ̃
ω

b
Rn , (11)[

1−∆τ̃

(
γn

∂2

∂ζ2
+Qn ∂

∂ζ

)]
−→
∆τr

n = ∆r∗, (12)

rn+1 = rn +
−→
∆τr

n . (13)

In each iteration, a new approximation to the solution is found by systemi-
cally solving Equation (11) for the dummy temporal differences ∆r∗, Equa-

tion (12) for the unknown vector
−→
∆τr

n, and finally, applying relation (13)

to update the solution vector rn+1. When the solution converges,
−→
∆τr

n ap-
proach zero, and the numerical solution is r ≈ rn. This method is potentially
fast since the solution process is fully vectorised, and variable time stepping
is incorporated. Note that for an accurate factorisation, and to ensure that
each linear system is strongly diagonally dominant, the time steps must be
small relative to the spatial grid spacings. Ly and Gear [3, 4] observed that
large errors can occur at the extreme ends of the frequency range, and sug-
gested that this unfavourable behaviour be eliminated by cycling the time
steps in a geometric sense, but with repeated endpoints (∆τ̃1 = ∆τ̃2 and
∆τ̃M−1 = ∆τ̃M), where M is the number of time steps per cycle.

4 Computational examples C209

In the finite difference method, all the spatial derivatives of (11) and (12)
are discretised using standard second order accurate central difference rules.
The first spatial derivatives of coefficients (3) are discretised using standard
second order accurate forward, central and backward difference rules, de-
pending on whether the concerned grid point is on the body boundary, an
interior grid point, or on the far-field boundary. This forms two sets of two
linear tridiagonal equation systems, instead of tridiagonal block systems of
equations as would occur if unfactored equation (7) is used. Equation (10)
reduces a formidable matrix inversion problem to a series of small bandwidth
matrix inversion problems, where efficient solution algorithms are utilised, by
reducing the two dimensional matrix inversion problem to two one dimen-
sional problems. Equation (11) forms a so-called cyclic tridiagonal system
(due to the periodic boundary conditions at the re-entrant boundary), which
is inverted by applying the Sherman–Morrison formula [7] together with a
standard tridiagonal system solver, treating the system as tridiagonal plus
a small correction. Equation (12) forms a pure tridiagonal system that can
be efficiently inverted by any robust tridiagonal solver. When a 6= 0 , Equa-
tions (11) and (12) form a three time level iterative scheme, which requires
no additional computation and no additional storage as compared to the two
time level scheme (when a = 0) that requires two levels of data, namely rn

and
−→
∆τr

n. At the start of an iteration, rn and
←−
∆τr

n are both known subse-
quent to advancing the solution from time level τn to τn+1 using (11) to (13).

After ∆r∗ has been computed from (11) along a ζ-constant line,
←−
∆τr

n along
this same line is no longer required, and is over written with the ∆r∗ values.

Similarly, as
−→
∆τr

n is computed from (12) along a ξ-constant line, the new
result is written in the storage space containing the ∆r∗ values.

4 Computational examples

The af algorithm is employed with an Euler implicit time difference rule
(a = 0 , b = 1) to generate an O-type grid system around a body of irregular

4 Computational examples C210

Table 2: Comparison of computational times.
Algorithm psor lsor af1 af2

Iterations 189 603 31 37
Error, E 4.980

(
10−5

)
4.975

(
10−5

)
4.981

(
10−5

)
4.988

(
10−5

)
Total cpu time 0.291 secs 1.963 secs 0.181 secs 0.271 secs

Iteration

E
rr

or

0 100 200 300 400 500 600 700
10-5

10-4

10-3

10-2

PSOR
LSOR

AF2
(red)

AF1

Africa

ωPSOR = 1.900

ωLSOR = 1.046

ωAF1 = 2.014

ωAF2 = 1.713

Iteration

M
ax

im
um

R
es

id
ua

l

0 5 10 15 20 25 30 35 40
10-7

10-6

10-5

10-4

10-3

10-2 Africa

AF1

AF2

∆τ̃min = 100

∆τ̃max = 20, 000

M = 6 (rep)

Figure 1: Convergence histories.

4 Computational examples C211

shape represented by the continent Africa, with 87 points around the body
contour and 31 points in the radial direction. It was found, through numerical
experiments, that the af algorithm became unstable if the Euler explicit
and leap frog time difference rules were used. A cycle of six time steps
with values between ∆τ̃min = 100 and ∆τ̃max = 2 × 104 is used. The grids
have been generated without the source terms (designated as af1 algorithm,
essentially solving a system of Laplace’s equations) and with source terms of
the following form (af2 algorithm),

p(ξ, ζ) = 0 and q(ξ, ζ) =
J∑
j=1

µj sign(ζj − ζ) exp (−κj |ζj − ζ|) . (14)

Functions (14) enforce the ζ-lines clustered toward a group of specified grid
lines ζj, where µj and κj are the amplification and decay factor, respectively,
for grid line ζj. For the purposes of comparison, the psor and lsor schemes
are used to generate the same set of grids, but without the source terms.
Optimal ω values were obtained by numerical experiments and were used in
all the schemes, see Figure 1. It was surprising that ω for the af1 algorithm is
greater than two, and very close to one for the lsor scheme, which probably
helps to explain why the lsor scheme is much slower than the psor scheme
in reaching convergence (see Table 2). All schemes are terminated when the
error (representing the total changes in the solution) per grid point, E, is less
than 5×10−5. Figure 1 compares the convergence history of all schemes, and
shows that the maximum residual of the af algorithms reduce substantially
whenever the algorithms completed one cycle of time steps. Overall, the
errors decrease in a logarithmical manner, and the af algorithms require the
least number of iterations for convergence.

Since a single af iteration requires more computational (cpu) time than
a single psor or lsor iteration, a comparison of the number of iterations
required for convergence is not meaningful. Therefore, the actual cpu times
required for convergence on an ibm ThinkPad t22 model notebook with an
Intel Pentium iii processor of speed 995 MHz, running the Microsoft Win-
dows xp Professional operating system with 384 mb of physical memory and

4 Computational examples C212

X

Z

-2 0 2 4
-4

-2

0

2

4

Initial grid X

Z

-2 0 2 4
-4

-2

0

2

4

After 10th iteration

X

Z

-2 0 2 4
-4

-2

0

2

4

After 22nd iteration X

Z

-2 0 2 4
-4

-2

0

2

4

Final grid

Figure 2: Development of a grid system during the solution process.

4 Computational examples C213

X

Z

-2 0 2 4
-4

-2

0

2

4

Without source terms X

Z

-2 0 2 4
-4

-2

0

2

4

With source terms

X

Z

-1 0 1 2

-1

0

1

X

Z

-1 0 1 2

-1

0

1

Figure 3: Generating grid systems without (left plots) and with (right
plots) grid lines clustering towards ζ1- to ζ4-line with µ = (100, 100, 90, 90)
and κ = (0.2, 0.2, 0.25, 0.3) .

5 Concluding remarks C214

576 mb of virtual memory are compared in Table 2. The comparisons show
that the af1 algorithm is about twice as fast as the psor scheme, and ten
times faster than the lsor scheme. We observed that the speed at which
the scheme converges mainly depended on the manner in which the shape
of the branch-cuts are changing from one iteration to the next. In the af
algorithm, the grid points along the branch-cut are included implicitly into
the equation system, and so, the branch-cut points are updated with all other
interior points simultaneously (as illustrated in Figure 2). Whereas for the
psor and lsor schemes, these grid points are computed after each iteration,
hence the branch-cuts are updated with one iteration level lapsed. When
the source terms are included, the number of iterations required for conver-
gence by the af2 algorithm increases by 20 %, and the computational time
increases by 50 %.

Careful examination of the plots in Figure 2 (where the grids shown af-
ter the 10th, 22nd and final iterations are visually indistinguishable), and
Figure 3 clearly indicate a smooth distribution of the grid points within the
domain, in particular noting the adjustment of the grid points on the branch-
cut. The natural clustering of grid points due to the elliptic nature of the
governing pdes, and enforced clustering of grid lines due to the inclusion of
the source terms toward the body can be seen. The final grid is correctly gen-
erated, even though the initial grid is badly distorted with grid lines crossing
and highly skewed in some regions near the body, which makes the process
suitable for automatic grid generation computer code.

5 Concluding remarks

A system of Poisson equations is solved in the computational domain by a
finite difference method to generate a structured grid around a single body
of arbitrary shape in two dimensions. In the af algorithm, the method of
false transients is incorporated, in which a sequence of time steps is cycled

References C215

in a geometric fashion with repeated endpoints. We found that the proposed
af algorithm (with and without the source terms for clustering of grid lines
towards the body) is significantly faster in reaching convergence to the user’s
required accuracy than both the psor and lsor schemes. We observed that
if the employed numerical scheme is numerically stable and converged, a
correct final grid system can always be obtained independent of the form of its
initial grid system, and hence, make it suitable for automatic grid generation
computer code. No restrictions are enforced on the shape of the boundaries,
which may even be time dependent, and the approach can be extended to
generating grids for body of arbitrary shapes in three dimensions. Although,
the superiority of the af algorithm has been demonstrated for the automatic
grid generation problem, it can be utilised for other problems requiring the
solution of a set of elliptic pdes of similar nature.

References

[1] Catherall, D., Optimum Approximate-Factorization Schemes for
Two-Dimensional Steady Potential Flows, AIAA Journal, 20, 8, 1982,
pp. 1057–1063. C205

[2] Hoffmann, K. A., Computational Fluid Dynamics for Engineers,
Engineering Educational System, Texas, USA, 1989. C204, C205, C206

[3] Ly, E., Improved Approximate Factorisation Algorithm for the Steady
Subsonic and Transonic Flow over an Aircraft Wing, in Proceedings of
the 21st Congress of the International Council of the Aeronautical
Sciences (ICAS98), AIAA and ICAS, Melbourne, Australia, Sep. 1998,
Paper A98-31699. C205, C208

[4] Ly, E., and Gear, J. A., Time-Linearized Transonic Computations
Including Shock Wave Motion Effects, Journal of Aircraft, 39, 6,
Nov./Dec. 2002, pp. 964–972. C205, C208

References C216

[5] Ly, E., and Nakamichi, J., Time-Linearised Transonic Computations
Including Entropy, Vorticity and Shock Wave Motion Effects, The
Aeronautical Journal, Nov. 2003, pp. 687–695. C205

[6] Mathur, J. S., and Chakrabartty, S. K., An Approximate Factorization
Scheme for Elliptic Grid Generation with Control Functions, Numerical
Methods for Partial Differential Equations, 10, 6, 1994, pp. 703–713.
C205

[7] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,
Numerical Recipes in FORTRAN: The Art of Scientific Computing,
Second Edition, Cambridge University Press, USA, 1994. C209

[8] Thompson, J. F., Thames, F. C., and Mastin, C. W., Boundary-Fitted
Curvilinear Coordinate Systems for Solution of Partial Differential
Equations on Fields Containing any Number of Arbitrary
Two-Dimensional Bodies, NASA Contractor Report CR-2729,
Washington DC, USA, July 1977, 253 pages. C204, C205, C206

[9] Warming, R. F., and Beam, R. M., On the Construction and
Application of Implicit Factored Schemes for Conservation Laws, in
SIAM-AMS Proceedings, 11, USA, 1978, pp. 85–129. C205, C207

References C217

Author addresses

1. E. Ly, School of Mathematical and Geospatial Sciences, SET
Portfolio, RMIT University, Melbourne, Victoria 3001, Australia.
mailto:eddie.ly@rmit.edu.au

2. D. Norrison, School of Mathematical and Geospatial Sciences, SET
Portfolio, RMIT University, Melbourne, Victoria 3001, Australia.

mailto:eddie.ly@rmit.edu.au

	Introduction
	Grid generation equations
	Numerical solution procedure
	Computational examples
	Concluding remarks
	References

