
ANZIAM J. 45 (E) ppE1–E40, 2003 E1

Model reference control using sliding mode
with Hamiltonian dynamics
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Abstract

Model reference control and model reference adaptive control has
since its inception, found application in a wide range of applications
from the control of simple mechanical structures to the more complex
robotic manipulators. Sliding mode techniques largely simplify the
task of tracking the reference model and are capable of accommodat-
ing the uncertainties present in the dynamics of the system. In this
paper we are concerned with model tracking in finite time for plant
and reference model which are given in Hamiltonian format. The
method is applied to nonlinear plant and linear model, with partic-
ular application to robot control. We also include the addition of a
stabilising supervisory controller in terms of the Hamiltonian of the
reference model.
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1 Introduction

Model reference control (mrc) and model reference adaptive control (mrac)
has a wide range of applications from the control of simple mechanical struc-
tures to the control of complex robotic manipulators. Specifically, it has
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proven its practicality in control systems with constant or slowly-varying pa-
rameters. A whole range of different formalisms may be used to synthesise
an adaptation mechanism. Sliding mode techniques largely simplify the task
of tracking the reference model and are capable of accommodating the uncer-
tainties present in the dynamics of the system. We use the Lyapunov method
and sliding mode dynamics to determine controllers for (adaptive) tracking
in finite time and also give sufficient conditions to ensure that the resulting
system is stable.

Using the Hamiltonian formulation immediately provides a control system
in standard state space format. Further, position and momentum coordinates
are conjugate variables and the Hamiltonian itself is related to the energy
of the system (in conservative systems it represents directly total energy of
the system). Model reference control in Hamiltonian formulation [3] uses a
Hamiltonian function and Lyapunov asymptotic stability techniques for mrc
with no reference to sliding mode. (An earlier formulation has been presented
by Skowronski [2].)

We begin by setting the Hamiltonian structure for the plant and model.
The plant is described by Hamiltonian canonical equations:

q̇i =
∂Hp(q, p, a)

∂pi

,

ṗi = −∂Hp(q, p, a)

∂qi

+ QD
i (q, p, d) + QF

i (q, p, a, u) , (1)

where i = 1, . . . , n (we assume that n = 2) and Hp is the Hamiltonian of the
system, QD

i is a damping force, QF
i is an external force, u is a control vector,

and a = [a1, . . . , ak], k ≤ n , is a vector of adjustable plant parameters.
For technical reason we expand the vector a to a dimension n by assuming
aj = 0 for n ≥ j > k . We also assume that damping coefficients represented
by vector d = [d1, . . . , dn] may be polluted by uncertainty, and thus not
known in exact form. The output state is x = [ q p ]T . In mrc we assume
no uncertainty present in the system, and no adaptation parameters.
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The reference model is designed as another Hamiltonian system with
Hamiltonian Hm , and output x

m
= [ q

m
p

m
]T . In this model the damping

force and external force are assumed to be known functions of time and are
such that the reference model is Lagrange stable, that is, the model output
is bounded:

q̇mi
=

∂Hm(q
m
, p

m
)

∂pmi

,

ṗmi
= −∂Hm(q

m
, p

m
)

∂qmi

+ QD
mi

(q
m
, p

m
, d

m
) + QF

mi
(q

m
, p

m
, u

m
). (2)

Define the state error vector e = [ e
q

e
p ]T as

eqi
(t) = qi(t)− qmi

(t) ,

epi
(t) = pi(t)− pmi

(t) , i = 1, . . . , n . (3)

The rate of change of e is

ė
qi

=
∂Hp(q, p, a)

∂pi

− ∂Hm(q
m
, p

m
)

∂pmi

,

ė
pi

= −∂Hp(q, p, a)

∂qi

+
∂Hm(q

m
, p

m
)

∂qmi

+ QD
i (q, p, d)

−QD
mi

(q
m
, p

m
, d

m
) + QF

i (q, p, a, u)−QF
mi

(q
m
, p

m
, u

m
) ,

i = 1, . . . , n . Note that error dynamics are not given in standard (canonical)
Hamiltonian format as described in Skowronski [2].

To attempt to design control and adaptation laws in such a general form
as shown above would be impractical and so we consider a special form of the
dynamic Equations (1) and (2) which holds reasonable generality, in order
to find a suitable control and adaptation law in both mrc and mrac. We
begin first with Model Reference Control (without adjustable parameters a).



1 Introduction E5

2 Model reference control MRC

Let us define the sliding mode variable s for our second order system:

si = ėqi
+ λeα/β

qi
, i = 1, . . . , n ,

where α and β are odd positive integers, α < β .

Consider the traditional Lyapunov function as a quadratic form of sliding
mode variables:

V (s) =
1

2

n∑
i=1

s2
i . (4)

Denote by Eqi
, Epi

the right-hand side of the Equation (1) and by Eqmi
, Epmi

the right-hand side of the Equation (2). Then by definition

ėqi
= Eqi

− Eqmi
,

ëqi
= Ėqi

− Ėqmi
, i = 1, . . . , n . (5)

2.1 Assumptions

Reference model has its equilibria in the origin. The dynamics of the system
satisfies

q̇i = gi(q)pi ,

q̇mi
= gmi

(q
m
)pmi

, i = 1, . . . , n , (6)

where each gi(·), gmi
(·), for i = 1, . . . , n is a known bounded positive function.

Let us make a further assumption that Ėqi
can be expressed as a linear

function of Epi
, i = 1, 2, with coefficient functions f 1

i and f 2
i :

Ėqi
= f 1

i (q, p)Epi
+ f 2

i (q, p) , i = 1, . . . , n , (7)
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and where each f 1
i (·), for i = 1, . . . , n is a known bounded positive function:

0 ≤ |f 1
i (q, p)| ≤ B , (8)

and B is a positive constant. A wide range of mechanical systems satisfy
condition (6) and condition (7). Note that the control force is incorporated
in Epi

terms, see Equation (1).

2.2 Control law — MRC

Now we calculate the time derivative of the Lyapunov function in order to
extract the control law:

V̇ (s) =
n∑

i=1

siṡi =
n∑

i=1

si

(
ëqi

+
α

β
λėqi

eα/β−1
qi

)

=
n∑

i=1

si

[
f 1

i (q, p)Epi
+ f 2

i (q, p)− Ėqmi

+
α

β
λeα/β−1

qi

(
Eqi

− Eqmi

)]

=
n∑

i=1

si

[
f 1

i (q, p)

(
−∂Hp(q, p)

∂qi

+ QD
i (q, p, d) + QF

i (q, p, u)

)

+ f 2
i (q, p)− Ėqmi

+
α

β
λeα/β−1

qi

(
Eqi

− Eqmi

)]
. (9)

The control laws are designed as follows:

QF
i =

∂Hp

∂qi

−QD
i (q, p, d)

− 1

f 1
i

(
f 2

i (q, p)− Ėqmi
+

α

β
λeα/β−1

qi

(
Eqi

− Eqmi

))

− K

f 1
i

sgn(si) , i = 1, . . . , n , (10)
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where K > 0 is constant.

Substituting for QF
i from the control law (10) into Equation (9), see

that the control law selection makes the Lyapunov derivative semi-negative
definite:

V̇ (s) = −
n∑

i=1

siKsgn(si) = −K
n∑

i=1

|si| ≤ −K

(
n∑

i=1

s2
i

)1/2

= −
√

2KV 1/2 ≤ 0 . (11)

Obviously V̇ = 0 only if s = 0 . This implies that V reaches the sliding
surface in finite time T . Indeed, integrating inequality (11), we find that T
must satisfy the inequality:

T ≤ t0 +

√
2 (V (t0))

1/2

K
.

Given the expression (9) for V̇ , to show that s → 0 it is sufficient to
show that V̇ → 0 . First, we establish that s and ṡ are bounded (that in
turn shows that V̈ remains bounded and according to Barbalat’s lemma we
have V̇ → 0). Given Equation (11) obviously s and ṡ are bounded, see also
expression (9). Thus s → 0 as t → ∞ . This in turn implies that error
trajectories eqi

, i = 1, . . . , n , tend to 0 as t → ∞ . Now, from (6) and the
fact that ėqi

, i = 1, . . . , n , tend to 0 as t → ∞ (see definition of s), we see
that also epi

, i = 1, . . . , n , tend to 0 as t →∞ . The latter comes from

ėqi
= gi(q)pi − gmi

(q
m
)pmi

, i = 1, . . . , n ,

Because pi = pmi
+ epi

see that

gi(q)epi
= ėqi

− (gi(q)pi − gmi
(q

m
)) pmi

, i = 1, . . . , n , (12)

and this proves epi
, i = 1, . . . , n , tend to 0 as t →∞ as the equilibria of the

reference model are at the origin, which requires pmi
→ 0 . We have shown

more: namely that s → 0 in finite time.
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2.3 Robot illustration — MRC

To illustrate the method consider now the control of a cylindrical robotic
manipulator [1], which has one revolute joint and two prismatic joints, see
Figure 1.

The arm has length ` and its mass per unit is constant ma/` . The length
of the prismatic radial link changes when it slides through the hub. A force
opposes the motion of the link and is modelled as a spring with an adjustable
parameter ks (we denote it k̂s) which imposes zero force at r = 2`/3 . We
ignore the vertical motion along the hub. Denote q1 = r and q2 = θ . The
Hamiltonian describing the dynamics of the manipulator is

H(q, p) =
1

2

(
1

ma + m`

p2
1 +

1

C(q1)
p2

2 + ks

(
q1 −

2

3
`
)2
)

,

where C(q) = ma

4`
(q3 + (` − q)3) + m`q

2 + I ; and I is the effective moment
of inertia of the rotating masses excluding ma and m`. We introduce the
canonical transformation (q, p) → (Q, P ) .

q1 =
Q1√

ma + m`

+
2

3
` ; p1 =

√
ma + m`P1 ;

q2 = Q2 ; p2 = P2 .

After the canonical transformation the Hamiltonian

H(Q,P ) =
1

2

(
P 2

1 +
1

C(Q1/
√

ma + m` + 2
3
`)

P 2
2 +

ks

ma + m`

Q2
1

)
.

Without loss of generality, we return to the original notation keeping in
mind that (p, q) denotes now the new coordinates (P, Q). The dynamics of
the manipulator are now

q̇1 = p1 ,
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(a)

(b)

Figure 1: Cylindrical robot manipulator: (a) top view; (b) side view.
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q̇2 =
p2

C(qc)
,

ṗ1 =
[(

3

4
ma + m`

)
q1

ma + m`

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc)

)2

− ks

(ma + m`)
q1 + QD

1 + QF
1 ,

ṗ2 = QD
2 + QF

2 , (13)

where

C(qc) =
ma

4`

(
q3
c + (`− qc)

3
)

+ mlq
2
c + I ,

qc =
q1√

ma + m`

+
2

3
` . (14)

Damping forces are defined by QD
i (q, p) = −dipi , i = 1, 2 , and di are the

positive damping coefficients.

Consider a reference model with dynamics

q̇m1 = pm1 ,

q̇m2 = pm2 ,

ṗm1 = − ksm

mma + mm`

qm1 + QD
m1

+ QF
m1

,

ṗm2 = −smqm2 + QD
m2

+ QF
m2

, (15)

where analogously QD
mi

(q
m
, p

m
) = −dmi

pmi
, i = 1, 2 , and dmi

are positive
damping coefficients. The term smqm2 represents spring forces. The equilibria
of the model coincide with the original system, except that qe

m2
= 0 , unlike

the systems’ qe
2 that can be arbitrary.

With the given Lyapunov function (4), we find its time derivative

V̇ = = s1ṡ1 + s2ṡ2
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= s1

(
ëq1 +

α

β
λeα/β−1

q1
ėq1

)
+ s2

(
ëq2 +

α

β
λeα/β−1

q2
ėq2

)
.

In this case

ėq1 = q̇1 − q̇m1 = p1 − pm1 = ep1 ėq2 =
p2

C(qc)
− pm2 .

Now we calculate Ċ(qc) noting that q̇c = q̇1√
ma+m`

.

Ċ(qc) =
ma

4`

(
3q2

c q̇c − 3(`− qc)
2q̇c

)
+ 2m`qcq̇c

=
3

4

maq̇1√
ma + m`

(
2q1√

ma + m`

+
1

3
`

)

+
2m`q1q̇1

ma + m`

+
4m``q̇1

3
√

ma + m`

. (16)

In the above formula q̇1 can be replaced by p1. For notational convenience,
denote by Ei the right-hand side of the system Equations (13), and by Mi

the right-hand side of the model (15), i = 1, . . . , 4 . Then

ėqi
= Ei −Mi , i = 1, 2

ėpj−2
= Ej −Mj , j = 3, 4

ëq1 = E3 −M3 ,

ëq2 = Ė2 −M4 ,

where

Ė2 =
C(qc)ṗ2 − Ċ(qc)p2

C2(qc)
.

Now, rewrite the expression (9) for V̇ as

V̇ (s) = s1

(
E3 −M3 +

α

β
λeα/β−1

q1
ep1

)

+ s2

(
Ė2 −M4

α

β
λeα/β−1

q2
(E2 −M2)

)
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= s1

(
E3 −M3 +

α

β
λeα/β−1

q1
ep1

)
(17)

+ s2

(
E4

C(qc)
− Ċ(qc)p2

C2(qc)
−M4 +

α

β
λeα/β−1

q2
(E2 −M2)

)
.

2.4 Control law for robotic example — MRC

The control force is now incorporated in Ep1 and Ep2-terms. We identify,
from (9) and (17), the following terms in (10)

f 1
1 = 1.0 , f 2

1 = 0 , f 1
2 =

1

C(qc)
, f 2

2 = − Ċ(qc)

C2(qc)
p2 , (18)

and

Eqm1
= pm1 ,

Eqm2
= pm2 ,

Ėqm1
= Epm1

= − ksm

mma + mm`

qm1 + QD
m1

+ QF
m1

,

Ėqm2
= Epm2

= −smqm2 + QD
m2

+ QF
m2

. (19)

Note that

∂Hp

∂q1

= −
[(

3

4
ma + m`

)
q1

(ma + m`)

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc)

)2

+
ks

(ma + m`)
q1 ,

∂Hp

∂q2

= 0 .
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Then the control laws according to (10) are:

QF
1 = −

[(
3

4
ma + m`

)
q1

(ma + m`)

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc

)2

+
ks

(ma + m`)
q1 −QD

1 −
1

f 1
1

(
−Epm1

+
α

β
λeα/β−1

q1
ep1

)

− K

f 1
1

sgn(s1) , (20)

QF
2 = −QD

2 −
1

f 1
2

(
−Epm2

− Ċ(qc)p2

C2(qc)
+

α

β
λeα/β−1

q2
(Eq2 − Eqm2

)

)

− K

f 1
2

sgn(s2) . (21)

Substituting the control law (20) and (21) into Equation (17) we obtain:

V̇ = −s1Ksgn(s1)− s2Ksgn(s2) = −K (|s1|+ |s2|)

≤ −K
(
s2
1 + s2

2

)1/2
= −

√
2KV 1/2 ≤ 0 .

In our computer simulations we assumed the following parameter values
for the plant and model: ma = 10.0 , mma = 10.5 , m` = 1.25 , mm`

= 1.5 ,
` = 1.0 , `m = 1.3 , I = 1.0 , ks = 100.0 , ksm = 110.0 , d1 = 5.0 , dm1 = 6.5 ,
d2 = 0.001 , dm2 = 0.8 , and sm = 9.1 . The values for the constants were
chosen as: K = 4 , λ = 2 , α = 3 and β = 5 . The initial conditions:
q1 = 0.1 , q2 = 3.0 , p1 = 0.0 , p2 = 0.0 , qm1 = 0.6 , qm2 = 0.1 , pm1 = 4.0 ,
and pm2 = 3.2 .

The error trajectory and controller time history for the simulations are
shown on Figure 2. The time history of the Lyapunov and its derivative,
together with the sliding mode variables are shown in Figure 3.
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(a)

(b)

Figure 2: (a) Error convergence for mrc (b) Controller for mrc
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(a)

(b)

Figure 3: (a) Lyapunov function and its derivative (b) Sliding mode vari-
ables
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The convergence times of the error trajectories to within an ε-envelope of
the origin (which is defined as a set of all states that lie within distance of ε
from the origin) are: Tc = 9.47 for ε = 0.1 and Tc = 9.74 for ε = 0.05 .

3 Model reference adaptive control — MRAC

Similarly we define a Lyapunov function for the adaptive case as a quadratic
form of sliding mode variables plus its adaptive terms:

V (s, a, d) =
1

2

n∑
i=1

s2
i +

1

2γ

n∑
i=1

ã2
i +

1

2γ

n∑
i=1

d̃2
i , (22)

where γ > 0 is constant and

ãi = âi − a∗i , d̃i = d̂i − d∗i ,

and where âi and d̂i are our estimates of uncertain parameters whereas a∗i
and d∗i are their true values (but they may be unknown). We assume that
condition (7) holds for mrac. Again we calculate the time-derivative of
Lyapunov function in order to extract the control law:

V̇ (s, a, d) =
n∑

i=1

[
siṡi +

1

γ
˙̃aiãi +

1

γ
˙̃did̃i

]

=
n∑

i=1

[
si

(
ëqi

+
α

β
λėqi

eα/β−1
qi

)
+

1

γ
˙̃aiãi +

1

γ
˙̃did̃i

]

=
n∑

i=1

[
si

(
f 1

i (q, p)Epi
+ f 2

i (q, p)− Ėqmi

+
α

β
λeα/β−1

qi

(
Eqi

− Eqmi

))
+

1

γ
˙̃aiãi +

1

γ
˙̃did̃i

]

=
n∑

i=1

[
f 1

i (q, p)

(
−∂Hp(q, p, a)

∂qi

+ QD
i (q, p, d)
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+ QF
i (q, p, a, u)

)
+ f 2

i (q, p)− Ėqmi
(23)

+
α

β
λeα/β−1

qi

(
Eqi

− Eqmi

)]
+

1

γ

n∑
i=1

(
˙̃aiãi + ˙̃did̃i

)
.

We assume that plant dynamics can be linearly parametrised in terms of
the unknown parameters ai. Note: the damping force QD

i (for all practical
purposes) is linear in its damping coefficient. Let us denote

∂Hp(q, p, a)

∂qi

= ai

∂H`
p(q, p)

∂qi

,

QD
i (q, p, d) = diQ

D`
i (q, p) , (24)

where superscript ` indicates function after linear parametrisation.

3.1 Control and adaptation law in MRAC

We design the control law in mrac version:

QF
i = âi

∂H`
p

∂qi

− d̂iQ
D`
i (q, p)

− 1

f 1
i

(
−Ėqmi

+
α

β
λeα/β−1

qi

(
Eqi

− Eqmi

))

− f 2
i (q, p)− K

f 1
i

sgn(si) , i = 1, . . . , n . (25)

After substituting from Equation (25) into Equation (23) we obtain

V̇ (s, a, d) =
n∑

i=1

si

[
(âi − ai)

∂H`
p

∂qi

−
(
d̂i − di

)
QD`

i (q, p)

]

−
n∑

i=1

siKsgn(si) +
1

γ

n∑
i=1

(
˙̃aiãi + ˙̃did̃i

)
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=
n∑

i=1

[
ãi

(
si

∂H`
p

∂qi

+
1

γ
˙̂ai

)
+ d̃i

(
−siQ

D`
i (q, p) +

1

γ
˙̂
di

)]

−
n∑

i=1

siKsgn(si) . (26)

We now define the adaptation law

˙̂ai = −Kγ
√

γ
sgn(ãi)− γsi

∂H`
p

∂qi

− γK
√

γ
sgn(ãi) , (27)

˙̂
di = −Kγ

√
γ

sgn(d̃i) + γsiQ
D`
i − γK

√
γ

sgn(d̃i) . (28)

3.2 Convergence

Now we can return to our evaluation of V̇ and prove it to be negative semi-
definite, and consequently securing asymptotic tracking convergence. Sub-
stituting control (25) and adaptation laws (27) and (28) into Equation (26),
and using a simple algebraic inequality [4], we obtain

V̇ (s, a, d) = −K
n∑

i=1

[
1
√

γ
ãisgn(ãi) +

1
√

γ
d̃isgn(d̃i) + sisgn(si)

]

= −K
n∑

i=1

[
1
√

γ
|ãi|+

1
√

γ
|d̃i|) + sisgn(si)

]

= −K
n∑

i=1

|si| ≤ −K

(
n∑

i=1

s2
i

)1/2

≤ −
√

2KV 1/2 ≤ 0 . (29)

Obviously V̇ = 0 only if s = 0 . This implies that V reaches the origin in a
finite time T , that is, V (T ) = 0 ; indeed, integrating inequality (29) see that

T ≤ t0 +

√
2V 1/2(t0)

K
. (30)
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Analogously, as in mrc section, we show that given the expression (23) we
have s → 0 . It is sufficient to show that V̇ → 0 . Clearly s and ṡ are bounded,
this in turn shows that V̈ remains bounded and according to Barbalat’s
lemma we have V̇ → 0 . Given Equation (29) obviously s and ṡ are bounded,
see also Equation (23). Thus s → 0 as t →∞ . This in turn implies that error
trajectories eqi

, i = 1, . . . , n , tend to 0 as t →∞ . By the same argument as
in mrc section we can show that also epi

, i = 1, . . . , n , tend to 0 as t →∞ .
And again s → 0 in finite time, see Equation (30).

3.3 Robot illustration — MRAC

We consider the same example of robotic manipulator as in the mrc exam-
ple but now we consider the damping forces as uncertain due to unknown
damping coefficients. Damping forces are defined by QD

i (q, p, d) = −dipi ,
i = 1, 2 , and di are the positive damping coefficients of unknown value, and
thus replaced in our control law by adjustable damping coefficients d̂1 and d̂2.
Similarly ks is of uncertain value and thus subject to adaptation mechanism.

We modify the previous Lyapunov function to introduce adaptive terms

V (s, d1, d2, ks) =
2∑

i=1

s2
i +

1

2γ
k̃2

s +
1

2γ
(d̃2

1 + d̃2
2) .

Its time derivative is

V̇ = s1ṡ1 + s2ṡ2 +
1

γ
˙̃ksk̃s +

1

γ

2∑
i=1

˙̃did̃i = s1

(
ëq1 +

α

β
λeα/β−1

q1
ėq1

)

+ s2

(
ëq2 +

α

β
λeα/β−1

q2
ėq2

)
+

1

γ
˙̃ksk̃s +

1

γ

2∑
i=1

˙̃did̃i . (31)

Now, rewrite the expression for V̇ using definitions and notation from the
mrc section:

V̇ (s) = s1

(
Ep1 − Epm1

+
α

β
λeα/β−1

q1
ep1

)
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+ s2

(
Ėq2 − Epm2

α

β
λeα/β−1

q2
(Eq2 − Eqm2

)

)

+
1

γ
˙̃ksk̃s +

1

γ

2∑
i=1

˙̃did̃i

= s1

(
Ep1 − Epm1

+
α

β
λeα/β−1

q1
ep1

)

+ s2

(
Ep2

C(qc)
− Ċ(qc)p2

C2(qc)
− Epm2

+
α

β
λeα/β−1

q2
(Eq2 − Eqm2

)

)

+
1

γ
˙̃ksk̃s +

1

γ

2∑
i=1

˙̃did̃i . (32)

3.4 Control and adaptation law

Again, the control force is incorporated in Ep1 and Ep2-terms. According to
(25) our control law is

QF
1 = −

[(
3

4
ma + m`

)
q1

ma + m`

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc

)2

+
k̂s

(ma + m`)
q1 − Q̂D

1 −
1

f 1
1

(
−Epm1

+
α

β
λeα/β−1

q1
ep1

)

− K

f 1
1

sgn(s1) , (33)

QF
2 = −Q̂D

2

1

f 1
2

(
−Epm2

− Ċ(qc)p2

C2(qc)
+

α

β
λeα/β−1

q2
(Eq2 − Eqm2

)

)

− K

f 1
2

sgn(s2) , (34)
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where K is a positive constant, and k̂s , Q̂D`
i = d̂iQ

D`
i , i = 1, 2 , are our

estimates of uncertain functions. Other terms are defined as in mrc case.

Substituting the control law (33) and (34) into Equation (32):

V̇ = s1k̃s
q1

ma + m`

+ s1d̃1p1 + s2d̃2
p2

C(qc)

− s1Ksgn(s1)− s2Ksgn(s2) +
1

γ
˙̂
ksk̃s +

1

γ

2∑
i=1

˙̂
did̃i . (35)

Then we formulate our adaptation law:

˙̂
d1 = −Kγ

√
γ
− γs1p1 ,

˙̂
d2 = −Kγ

√
γ
− γs2

p2

C(qc)
,

˙̂
ks = −Kγ

√
γ
− γs1

q1

ma + m`

. (36)

Then after substituting from Equation (36) into Equation (35) see that

V̇ = s1k̃s
q1

ma + m`

+ s1d̃1p1 + s2d̃2
p2

C(qc)
− s1Ksgn(s1)

− s2Ksgn(s2) +
1

γ

[
−γs1

q1

ma + m`

]
k̃s

+
1

γ
[−γs1p1] d̃1 +

1

γ

[
−γs2

p2

C(qc)

]
d̃2

= −K(|s1|+ |s2|) ≤ −K
(
s2
1 + s2

2

)1/2
≤ −

√
2KV 1/2 . (37)

In our computer simulations we assumed the parameter values as in mrc,
and we also set k̃s = 0.0 , d̃1 = 0.0 , d̃2 = 0.0 . The values for the constants
were chosen as K = 4 , γ = 2 , λ = 2 , α = 3 and β = 5 . Initial conditions
are the same as in mrc case. Error trajectory and controller time-history



3 Model reference adaptive control — MRAC E22

(a)

(b)

Figure 4: (a) Error convergence for mrac (b) Controller for mrac
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(a)

(b)

Figure 5: (a) Lyapunov function and its derivative (b) Sliding mode vari-
ables
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are shown on Figure 4. The time history of the Lyapunov and its derivative,
together with the sliding mode variables are shown in Figure 5.

The convergence times to the ε-envelope of the origin are Tc = 9.47 for
ε = 0.1 and Tc = 10.65 for ε = 0.05 . In some cases the convergence times
are even shorter than in non-adaptive case despite uncertainty introduced to
the system. It shows robustness of the adaptive scheme.

4 Stability

The sliding mode controller that we used up to now does not guarantee
stability. We require a new control law that secures stability of the system.

4.1 Supervisory controller

Consider the two level control system with supervisory controller, illustrated
on Figure 6.

The idea is to introduce a second-level controller designed to guarantee
stability and take advantage of the properties of the sliding mode controller
as the main controller without compromising its performance. The second-
level controller acts as a supervisory controller, that is, when the sliding
mode controller leads to instability of the system, it starts working to return
stability of the system. Otherwise it remains idle.

We show here how develop the supervisory controller for mrc, as the
controller for mrac would be the same with adaptive terms added.

Denote our control law (10) as usm
i (x) = QF

i (x) . Our task then is to de-
sign the second level controller that would guarantee that the control system
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Figure 6: Two level control system.
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is globally stable, that is

‖x‖ ≤ B for every t > 0 ,

where B > 0 is an arbitrary constant chosen by design. To this end we
append the sliding mode controller usm

i , i = 1, . . . , n , with a supervisory
controller uS

i (x), i = 1, . . . , n , which is zero inside the ball Bx = {x : ‖x‖ ≤
B} and is activated only when the system’s trajectory reaches the boundary
of Bx. Define the two-level controller as

ui = usm
i (x) + Is(x)uS

i (x) , i = 1, . . . , n , (38)

where

Is(x) =

{
1 , for ‖x‖ ≥ B ,
0 , otherwise.

We design uS
i such that ‖x‖ ≤ B for all t > 0 .

4.2 Stable controller for sliding mode

Assume that the system and model are defined by (1) and (2), and that the
model Hamiltonian has the form

Hm(q
m
, p

m
) =

1

2

n∑
i=1

ami
p2

mi
+ fm(q

m
) , (39)

where ami
> 0 is a constant, fm(·) is a known function, equivalent to a

potential energy function. For the plant Hamiltonian H, the state equation
for

q̇i = pi/Ci(q) , (40)

where functions Ci(q) 6= 0 and such that there exist estimation functions
festi

(e
q
, q) satisfying

∂Hm(e)

∂eqi

(
pi

Ci(q)
− ami

pmi

)
≤ festi

epi
. (41)
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Furthermore, the plant’s momenta are in the following form:

ṗi = −fpi
(p, q, a) + QD

i + QF
i , (42)

where fpi
(·) is a known nonlinear function polluted by uncertainty.

Then the plant dynamics for i = 1, . . . , n are

q̇i =
pi

Ci(q)
,

ṗi = −∂Hp(q, p)

∂qi

+ QD
i (q, p) + QF

i (q, p, u) . (43)

The reference model for i = 1, . . . , n is

q̇mi
= ami

pmi
,

ṗmi
= −∂fm(q

m
)

∂qmi

+ QD
mi

(q
m
, p

m
, d

m
) + QF

mi
(q

m
, p

m
, u

m
) . (44)

Equations (43) and (44) give the following error dynamics:

ė
qi

=
pi

Ci(q)
− ami

pmi
,

ė
pi

= −∂Hp(q, p)

∂qi

+
∂fm(q

m
)

∂qmi

+ QD
i (q, p)

−QD
mi

(q
m
, p

m
) + QF

i (q, p, u)

−QF
mi

(q
m
, p

m
, u

m
) , i = 1, . . . , n . (45)

Consider explicitly the terms of the controller ui, see (10):

ui =
∂Hp

∂qi

−QD
i (q, p, d)

− 1

f 1
i

(
f 2

i (q, p)− Ėqmi
+

α

β
λeα/β−1

qi

(
Eqi

− Eqmi

))

− K

f 1
i

sgn(si) + Isu
S
i , i = 1, . . . , n , (46)
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where in this particular case we write terms Ėqmi
and Eqi

− Eqmi
as

Ėqmi
= ami

ṗmi
= ami

(
− ∂fm

∂qmi

+ QD
mi

+ QF
mi

)
, (47)

Eqi
− Eqmi

=
pi

Ci(q)
− ami

pmi
, i = 1, . . . , n , (48)

Then substituting (47) and (48) into (46) we obtain for i = 1, . . . , n

ui =
∂Hp

∂qi

−QD
i −

1

f 1
i

(
f 2

i + ami

∂fm

∂qmi

− ami
QD

mi
− ami

QF
mi

+
α

β
λeα/β−1

qi

(
pi

Ci(q)
− ami

pmi

))
− K

f 1
i

sgn(si) + Isu
S
i

=
∂Hp

∂qi

−QD
i −

f 2
i

f 1
i

− ami

f 1
i

∂fm

∂qmi

+
ami

f 1
i

QD
mi

+
ami

f 1
i

QF
mi

− α

β
λeα/β−1

qi

(
pi

Ci(q)
− ami

pmi

)
− K

f 1
i

sgn(si) + Isu
S
i . (49)

Replacing QF
i with ui in (45) we obtain

ė
qi

=
pi

Ci(q)
− ami

pmi
,

ė
pi

= −f 2
i

f 1
i

+

(
1− ami

f 1
i

)(
∂fm

∂qmi

−QD
mi
−QF

mi

)

− α

β
λeα/β−1

qi

(
pi

Ci(q)
− ami

pmi

)

− K

f 1
i

sgn(si) + Isu
S
i , i = 1, . . . , n . (50)

The above error dynamics constitutes the system to be stabilised. Using the
Hamiltonian function for the model, we define the Lyapunov function

V (e) = Hm(e
q
, e

p
) =

1

2

n∑
i=1

ami
e2

pi
+ fm(e) . (51)
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We now evaluate the time derivative of V :

V̇ =

(
∂Hm

∂e
q

)T

ė
q
+

(
∂Hm

∂e
p

)T

ė
p

=

(
∂Hm

∂e
q

)T [
∂Hp

∂p
− ∂Hm

∂p
m

]
(52)

+

(
∂Hm

∂e
p

)T [
−∂Hp

∂q
+

∂Hm

∂q
m

+ (QD −QD

m
) + (QF −QF

m
)

]
.

In the second term on the right-hand side add and subtract inside the bracket,
the term QD

m
(e), to obtain

V̇ (e) =

(
∂Hm

∂e
p

)T

(e
q
, e

p
)QD

m
(e) +

(
∂Hm

∂e
q

)T [
∂Hp

∂p
− ∂Hm

∂p
m

]

+

(
∂Hm

∂e
p

)T [
−∂Hp

∂q
+

∂Hm

∂q
m

+ (QD −QD

m
)

+ (QF −QF

m
)−QD

m
(e)
]

. (53)

Taking into account our assumptions about the special form of Hm gives

V̇ (e) =
n∑

i=1

ami
epi

QD
mi

(e)

+
n∑

i=1

∂fm(e
q
)

∂eqi

(
pi

Ci(q)
− ami

pmi

)

+
n∑

i=1

ami
epi

(
− pi

C(q)
− ami

pmi

)

+
n∑

i=1

ami
epi

(
−∂Hp

∂qi

+
∂fm

∂qmi

QD
i −QD

mi
−QD

mi
(e)

+ QF
i −QF

mi

)
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≤
n∑

i=1

ami
epi

QD
mi

(e) +
n∑

i=1

ami
epi

(
festi

− ∂Hp

∂qi

+
∂fm

∂qmi

+ QD
i −QD

mi
−QD

mi
(e) + QF

i −QF
mi

)
. (54)

Replacing QF
i with the control ui, see (49), we obtain

V̇ (e) ≤
n∑

i=1

ami
epi

QD
mi

(e) +
n∑

i=1

ami
epi

[
festi

− f 2
i

f 1
i

−QD
mi

(e)

+

(
1− ami

f 1
i

)
∂fm

∂qmi

−
(

1− ami

f 1
i

)
QD

mi

−
(

1− ami

f 1
i

)
QF

mi
− α

β

λ

f 1
i

eα/β−1
qi

(
pi

Ci(q)
− ami

pmi

)

− K

f 1
i

sgn(si) + Isu
S
i

]

=
n∑

i=1

ami
epi

QD
mi

(e) +
n∑

i=1

ami
epi

[
festi

− f 2
i

f 1
i

−QD
mi

(e)

+

(
1− ami

f 1
i

)(
∂fm

∂qmi

−QD
mi
−QF

mi

)

− α

β

λ

f 1
i

eα/β−1
qi

(
pi

Ci(q)
− ami

pmi

)

− K

f 1
i

sgn(si) + Isu
S
i

]
, i = 1, . . . , n . (55)

Assume now that ‖e‖ ≥ B , that is Is = 1 . Let our controller uS
i be

designed as

uS
i =

f 2
i

f 1
i

− festi
+ QD

mi
(e)−

(
1− ami

f 1
i

)(
∂fm

∂qmi

−QD
mi
−QF

mi

)

+
α

β

λ

f 1
i

eα/β−1
qi

(
pi

Ci(q)
− ami

pmi

)
+

K

f 1
i

sgn(si)− epi
,

i = 1, . . . , n . (56)
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Note, that for ‖e‖ ≥ B we can simplify the expression for ui. Indeed,
substituting (56) into (49) we obtain for i = 1, . . . , n

ui =
∂Hp

∂qi

− f 2
i

f 1
i

− festi
− ∂fm

∂qmi

−QD
i + QD

mi
+ QD

mi
(e) + QF

mi
− epi

. (57)

Substituting (56) into (55) gives

V̇ (e) ≤
n∑

i=1

ami
epi

QD
mi

(e)−
n∑

i=1

ami
e2

pi
≤ 0 . (58)

This shows that the controller uS
i , i = 1, . . . , n , secures decreasing of ‖e‖ if

‖e‖ ≥ B . Consequently, if the initial condition lies within the ball Bx, that
is, ‖e‖ ≤ B , then ‖e‖ ≤ B for all t > 0 .

The discontinuous character of function Is(·) may cause chattering in
the region across boundary of Bx. To minimise such oscillations we may
introduce a modified version of Is(·) :

Is =


0 , if ‖e‖ < ε ,
‖e‖−ε
B−ε

, if ε ≤ ‖e‖ ≤ B ,

1 , if ‖e‖ ≥ B ,

where constant 0 < ε < B is given by design.

4.3 Robot illustration

We easily identify terms in (10), (49) and (56) :

f 1
1 = 1.0 , f 2

1 = 0 ,

f 1
2 =

1

C(qc)
, f 2

2 = − Ċ(qc)

C2(qc)
p2 , (59)
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and

fest1 =
ksm

mma + mm`

eq1 ,

fest2 =

{
smeq2(p2/C(qc)− pm2)/ep2 , for |ep2| > ε ,
smeq2 , otherwise,

Eqm1
= pm1 , Eqm2

= pm2 ,

Ėqm1
= Epm1

= − ksm

mma + mm`

qm1 + QD
m1

+ QF
m1

,

Ėqm2
= Epm2

= −smqm2 + QD
m2

+ QF
m2

, (60)

am1 = am2 = 1 ,

C1(qc) ≡ 1 , C2(qc) = C(qc) ,

fm =
1

2

(
ksm

mma + mm`

q2
m1

+ smq2
m2

)
,

∂fm

∂qm1

=
ksm

mma + mm`

qm1 ,

∂fm

∂qm2

= smqm2 . (61)

Note that

∂Hp

∂q1

= −
[(

3

4
ma + m`

)
q1

(ma + m`)

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc)

)2

+
ks

(ma + m`)
q1 ,

∂Hp

∂q2

= 0 .
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Then we write the control law according to (46). Observe that usm
1 and usm

2

are (20) and (21):

usm
1 = −

[(
3

4
ma + m`

)
q1

(ma + m`)

+
(

1

8
ma +

2

3
m`

)
`√

ma + m`

](
p2

C(qc)

)2

+
ks

(ma + m`)
q1 −QD

1 + QD
m1

+ QF
m1

− ksm

(mma + mm`
)
qm1 −

α

β
λeα/β−1

q1
ep1 −Ksgn(s1) , (62)

usm
2 = −QD

2 +
Ċ(qc)p2

C(qc)
− C(qc)smqm2 + C(qc)Q

D
m2

+ C(qc)Q
F
m2

− C(qc)
α

β
λeα/β−1

q2

(
p2

C(qc)
− pm2

)
− C(qc)Ksgn(s2) , (63)

and our supervisory controller is

uS
1 = − ksm

(mma + mm`
)
eq1 + QD

m1
(e) +

α

β

λ

f 1
1

eα/β−1
q1

ep1

+ Ksgn(s1)− ep1 , (64)

uS
2 = −Ċ(qc)p2

C(qc)
− fest2 + QD

m2
(e)

− (1− C(qc))
(
smqm2 −QD

m2
−QF

m2

)
+ C(qc)

α

β
λeα/β−1

q2

(
p2

C(qc)
− pm2

)
+ C(qc)Ksgn(s2)− ep2 . (65)

Then the control law for ‖e‖ ≥ B , that is Is = 1 , is

u1 = usm
1 + uS

1
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= −Q0

(
p2

C(qc)

)2

+

(
ks

(ma + m`)
− ksm

(mma + mm`
)

)
q1

−QD
1 + QD

m1
+ QF

m1
+ QD

m1
(e)− ep1 , (66)

u2 = usm
2 + uS

2

= −fest2 − smqm2 −QD
2 + QD

m2
+ QF

m2
+ QD

m2
(e)− ep2 . (67)

Now we evaluate the time derivative of V :

V̇ =
ksm

(mma + mm`
)
eq1ep1 + smeq2

(
1

C(qc)
p2 − pm2

)

+

Q0

(
p2

C(qc)

)2

− ks

ma + ml

q1 +
ksm

mma + mm`

qm1

+ QD
1 −QD

m1
+ QF

1 −QF
m1

]
ep1

+
(
smqm2 + QD

2 −QD
m2

+ QF
2 −QF

m2

)
ep2 .

We add and subtract inside the epi
-brackets the term QD

mi
(e) = −dmi

epi
:

V̇ = −
2∑

i=1

dmi
e2

pi
+

ksm

(mma + mm`
)
eq1ep1 + smeq2

(
1

C(qc)
p2 − pm2

)

+ ep1

Q0

(
p2

C(qc)

)2

− ks

ma + ml

q1 +
ksm

mma + mm`

qm1

+ QD
1 −QD

m1
−QD

m1
(e) + QF

1 −QF
m1

]
+ ep2(smqm2 + QD

2 −QD
m2
−QD

m2
(e) + QF

2 −QF
m2

)

≤ −
2∑

i=1

dmi
e2

pi

+ ep1

Q0

(
p2

C(qc)

)2

+

(
ksm

mma + mm`

− ks

ma + ml

)
q1

+ QD
1 −QD

m1
−QD

m1
(e) + QF

1 −QF
m1

]
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+ ep2

[
fest2 + smqm2 + QD

2 −QD
m2

−QD
m2

(e) + QF
2 −QF

m2

]
. (68)

After replacing QF
1 and QF

2 with u1 and u2 in (68) we obtain

V̇ = −
2∑

i=1

dmi
e2

pi
+

2∑
i=1

e2
pi
≤ 0 . (69)

This proves stability of the origin.

4.4 Computer simulation with supervisory controller

We ran the simulation for our previous example with the same initial data and
the radius was chosen as B = 4.2 . The values for the sliding mode constants
were chosen as K = 4 , γ = 2 , λ = 2 , α = 3 and β = 5 . The diameter
of the ball Bx is chosen as B = 4.0 . As the norm in the error-space we
have chosen ‖e‖ = max{|eq1|, |eq2|, |ep1 |, |ep2|} . This norm gives us a better
insight than the Euclidean norm as we are usually interested in keeping every
single trajectory, that is every component of the vector e, below a certain
value (in our case B) whereas the Euclidean norm gives us a length of e in
four-dimensional space. The results from one of many simulations are shown
on Figure 7. See the supervisory controller acts only during brief period of
time to secure stability of the system.

The impact of the supervisory controller is most visible on the ep2-trajectory.
In the lower left side of the diagram there is characteristic chattering visible
for a short period of time when supervisory controller switches on and off.

4.5 Asymptotic stability versus sliding mode

We ran two series (Series I and II) of computer simulations to compare the
performance of the controller implementing an asymptotic stability (as) tech-
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(a)

(b)

(c)

Figure 7: (a) Supervisory controller - error trajectories (b) Controller (c)
Supervisory controller
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nique, developed in [3], and the sliding mode (sm) controller. Detailed dis-
cussion including simulations results and diagrams can be found in [5]. Two
major factors were taken into account in this comparison: convergence time,
and magnitude of the control force. Mathematical formalism secures finite
time convergence for the sm-control which gives it apparently an advantage
over the as control method, but the results obtained did not support the sm
controller claim. Both controllers achieve finite time convergence measured
by Tc, the time error-trajectories entered an ε-envelope of zero, where ε > 0
is an arbitrarily small number. For computational reasons this cannot be too
small. In simulations we used ε = 0.1 (Series I and II) and ε = 0.05 (Se-
ries II). In both cases application of as controller resulted in shorter Tc times
than sm-controller could produce. The explanation for the difference lay with
the way the sm-controller handled the rotary link dynamics. Even though
all but one error-trajectory converge very quickly to the ε-envelope of zero,
the trajectory of error in rotary joint momentum oscillated for an extended
period of time, thus ruining the overall performance of the sm controller.
In the case of the as-controller, the same trajectory also oscillated but the
amplitude of those oscillations was much lower and was quickly smoothed
out.

We calculated also times Tf at which the sliding mode variables reached
terminal sliding mode (si = 0 , i = 1, 2). These times are short, ranging
from Tf = 0.31 to Tf = 2.45 (for ε = 0.1 , Series I and II), and Tf = 0.43
to Tf = 1.37 (for ε = 0.05 , Series II). However, the short time Tf does not
automatically translate into short times of error-trajectories convergence.
There is no simple linear dependence between Tf and Tc. In other words,
the rate of reaching the sm surface does not correspond to the rate of error-
trajectories convergence as defined above.

In the sm method we can manipulate constants K1 and λ to achieve the
faster rate of convergence of sliding mode vector s to zero. High values of K1

and λ may cause the time of error-trajectories convergence Tc to become
slightly longer. These high values can also cause error-trajectory bounce
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from its ε-envelope of zero, thus increasing chattering.

In terms of energy expenditure by control force, the sm controller seems
to have decisive advantage over the as-controller; however, not in all cases.

Note that whenever there was a big misalignment between initial condi-
tions of the plant and the reference model, the as-controller required in the
initial stage large control force to achieve tracking, whereas the sm-controller
seemed much more ‘frugal’ in comparison, providing much better efficiency
in terms of control force expenditure (especially in case when the motion of
the joints is in opposite direction then that of the reference model). However,
we noted in each series of simulations two exceptions that show that not for
all initial conditions the sm-controller is more efficient.

The Asymptotic Stability controllers do their job effectively after initial
settling down. The large values of control force in the initial phase are
partly due to the imperfection of the estimation function fest used in our
method [3]. However, the as controllers generally exhibit a tendency to a
substantial power consumption in the initial stage of tracking process. On
the positive side, they are remarkably stable, quite predictable and quickly
settle into a regular pattern.

To achieve a better accuracy in sm error-trajectories convergence and
eliminate some of the ‘bouncing’ we would need to use finer time-increment
in Runge-Kutta procedure for integration of the joint system of differential
equations describing the system-model dynamics. The time-increment of
dt = 0.001 produces smoother error-trajectories but is unrealistic for prac-
tical applications. That was the reason we used as the finest increment
dt = 0.01 . Application of boundary layer control would eliminate to some
extent the chattering, but in all control systems with non-zero sampling in-
terval the ideal convergence is unattainable [6].
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5 Conclusions

We have shown here that the traditional sliding mode approach to mrc and
mrac works successfully in a rather general format for plant and reference
models described in Hamiltonian format.

The development of adaptive control algorithms required linear parametri-
sation of the system’s Hamiltonian. This linearisation is concerned mainly
with parameters describing the system’s mass properties.

A stabilising controller was successfully designed for the sliding mode
method to ensure the stability of the resulting dynamical system. Our anal-
ysis for this stabilising supervisory controller was found to be sensitive to
the choice of various estimation functions. Usually they are designed as
discontinuous functions and this leads to switching control (especially when
error-vector trajectories converge near zero). This in turn introduces chatter-
ing and in some cases, causes the control system to lose its ability to track the
model trajectories. Such situations may occur when one or more error-vector
components converge to zero.

A short discussion was given comparing the sliding mode control tech-
nique presented in this paper with the traditional asymptotic Lyapunov
method previously published.

The sliding mode technique can be successfully implemented for systems
in Hamiltonian form. The Hamiltonian form gives a physically meaningful
formulation of the dynamics of control systems. Our use of the Hamiltonian
of the reference model to obtain stability of the resulting system under sliding
mode control, shows the use of how energy in this reference model plays a
significant role in the control of the plant dynamics.
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