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Numerical analysis of an averaged model of
turbulent transport near a roughness layer
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Abstract

We formulate and numerically analyse the averaged model of dis-
persion in turbulent canopy flows. The averaging is carried out across
the flow, for example over the river depth. To perform the averaging,
we use the general approach suggested by Roberts and co-authors in
the late 1980s, which is based on centre manifold theory. We derive
an evolution partial differential equation for the depth averaged con-
centration, involving first, second and higher order derivatives with
respect to the downstream coordinate. The coefficients of the equation
are expressed in terms of parameters characterising the turbulent flow.
Preliminary numerical results are demonstrated. In particular, it is
shown that the advection and diffusion coefficients coincide with their
values obtained earlier for the flow over a smooth bottom in the limit
of large depths.
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1 Introduction

The centre manifold approach, developed in a series of works originated by
Roberts [1, 2] (see also many references therein) is an effective tool enabling
one to rigorously derive a low dimensional (one dimensional in simplest case)
partial differential equation describing the spreading of contaminants and
tracers in environmental and industrial fluid flows,

∂tC = g1∂xC+ g2∂
2
xC+ g3∂

3
xC+ · · · , (1)

where C(x, t) is the depth averaged concentration of the contaminant. The
main idea behind the approach is briefly outlined in the next section. The
coefficients gi, i = 1, 2, . . . , are deduced from the original non-averaged
transfer equation as functions of parameters controlling the flow, such as the
Reynolds number and the von Karman constant. Equations such as (1) were
mostly derived in application to flows near smooth surfaces. However, flows
near rough surfaces, for example through agricultural or urban canopies, are
not less important; obviously they are extremely complicated.

In the present article we analyse an averaged dispersion model near a canopy
based on the three layer structure of the turbulent flow [3]. Note that
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different structures have also been proposed in the literature, particularly
for agricultural canopies [4]. Consider a turbulent inertial layer of constant
thickness H and the adjacent canopy layer of thickness h being the size of
obstacles. For example, it can be a turbulent flow in an open channel subject
to constant shear stress (measured by the friction velocity u2∗) applied to the
fluid surface. Hereafter we refer to channel flow; however, our analysis can
be generalised to cases of turbulent boundary layers of varying depth, for
instance near a semi-plane. The ensemble averaged concentration of passive
substance, c(x,y, t), is subject to the advection-diffusion equation

∂tc+ u(y)∂xc = ∂y[D(y)∂yc] , (2)

where D(y) is the turbulent diffusion coefficient assumed known. The bound-
ary conditions express non-penetration through the surface, y = H , and the
bottom, y = 0 ,

D∂yc|y=0 = D∂yc|y=H = 0 . (3)

2 Centre manifold procedure

Turbulent diffusion tends to spread the substance uniformly across the channel.
The velocity shear acts in the opposite way and tends to create vertical
nonuniformity. As a result of the competition of these factors, the contaminant
not only moves due to the advection but also effectively ‘diffuses’ along the
channel, that is in the x-direction, despite turbulent diffusion in this direction
being absent in Equation (2). Following Mercer and Roberts [1] we perform
the Fourier transformation of (2) to get

∂tĉ = L[ĉ] − iku(y)ĉ , (4)

where ĉ(y,k, t) is the Fourier transform of concentration c(x,y, t) defined
by 1/(2π)

∫∞
−∞ exp(−ikx)c dx . The linear operator L[ĉ] = ∂y[D(y)∂yĉ] ex-

presses the cross flow turbulent diffusion and has a discrete spectrum of
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eigenvalues. One of the eigenvalues is equal to zero; it corresponds to the
neutral eigenmode ĉ = constant that is an arbitrary constant level of con-
centration across the channel. All the other eigenvalues are negative; they
correspond to decaying non-uniformities of the concentration across the chan-
nel due to the diffusion, provided that there is no flux through the boundaries.

After a sufficiently long time, variations of the concentration along the channel
become slow; accordingly we suppose that the wave number k is small. Let
us add to (4) the trivial equation ∂tk = 0 and formally treat the wave
number k as a variable and the term kĉ as ‘nonlinear’. As governed by (4)
and ∂tk = 0 , the dynamics exponentially quickly evolve to a low dimensional
state, where each of the fast modes depends on t via the slow neutral mode.
As a measure of the ‘amplitude’ of the neutral mode we choose the depth
averaged concentration, Ĉ(k, t). Accordingly, we have

ĉ = ĉ(Ĉ,k,y) such that ∂tĈ = G(Ĉ,k) . (5)

With (5) taken into account, Equation (4) becomes

L[ĉ] =
∂ĉ

∂Ĉ
G+ ikuĉ . (6)

Since the problem is linear, we assume linear asymptotic expansions

ĉ =

∞∑
n=0

cn(y)(ik)
nĈ , G =

∞∑
n=1

gn(ik)
nĈ . (7)

The definition of Ĉ as the depth average implies the conditions

1

h

∫h
0

c0 dy = 1 ,

∫h
0

cn dy = 0 , for n = 1, 2, . . . . (8)

Substituting (7) into (6) and collecting similar powers of k we obtain a
sequence of equations for the unknown functions cn(y) and coefficients gn,

L[c0] = 0 , (9)
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L[cn] =

n∑
m=1

cn−mgm + u(y)cn−1 , for n = 1, 2, . . . . (10)

Integrating (10) over the depth we get

D∂yc|y=H − D∂yc|y=0 = gnc0 + u(y)cn−1 = gn + u(y)cn−1 ,

where the overline means depth averaging. Once the fluxes through the
boundaries are zero, then

gn = −u(y)cn−1 for n = 1, 2, . . . . (11)

Successively, we can calculate gn and cn for any n. Confining our attention
to only the three leading terms in the G series in (7), we obtain

∂tĈ = g1(ik)Ĉ+ g2(ik)
2Ĉ+ g3(ik)

3Ĉ+ · · · . (12)

Now, applying the inverse Fourier transformation to (12), we obtain the
advection-diffusion-dispersion equation for the averaged concentration in the
form (1).

3 Analysis of the flow near canopy

The inertial layer is described by the classical semi-logarithmic velocity
profile [5],

u(y)

u∗
=
1

κ
ln

(
y− d

y0

)
, (13)

where y0 is the roughness height, d is the displacement height and κ is the
von Karman constant. The values y0 and d are usually taken in engineering
literature as fractions of the canopy height h.

For the canopy layer, we adopt the model of Macdonald [3]. A parameter that
characterises the geometry of obstacles is the frontal area density λ = Af/Ad ,
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where Af is the frontal area of an obstacle exposed to the flow and Ad is the
total surface area per obstacle (total area divided by the number of obstacles).
Following Cionco [6], Macdonald considered cylindrically shaped obstacles
and assumed that within the canopy layer there is a balance between the local
shear stress and obstacle drag force. This assumption leads to the exponential
velocity profile

u(y) = uh exp[a(y/h− 1)] , (14)

where a is the so-called attenuation coefficient and uh is the velocity at y = h .
Typically 2 < a < 3 [7]. Note that the exponential profile (14) does not turn
exactly zero at y = 0 . However, the velocity there is small; we treat it as a
virtual zero. The analysis [3] showed that the parameter a linearly depends
on the frontal area density,

a = mλ

with m = 9.6 . For the mixing length `c in the canopy the following expression
in terms of λ, a and h, was obtained,

`c

h
=

√
pλ (1− e−2a)

4a3
, (15)

where p = 1.2 . At the top of the canopy the shear stress must be continuous.
Substituting the velocity (14) into the Prandtl expression for the shear
stress, `2c(∂u/∂y)

2, and equating it to the shear stress in the inertial layer u2∗,
gives

u∗

uh
=
a`c

h
.

The two velocity profiles—the canopy one expressed by (14) and semi-
logarithmic one expressed by (13)—must match each other. Macdonald [3]
achieved this by assuming that the mixing length ` varies linearly against y
when moving from the top of the canopy to some yet-to-be-determined contact
point with the semi-logarithmic layer, y = yw . At that point, the length `
must coincide with the mixing length on the lower edge of the semi-logarithmic
layer,

` = κ(y− d) (16)
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(this is precisely the expression that eventually produces (13)). At the point
y = yw formula (16) becomes `w = κ(yw − d). Macdonald adopted the
following linear interpolation of the length connecting the point ` = `c at
y = h and the point ` = `w at y = yw ,

`(y) = `c +

(
y− h

yw − h

)
[κ(yw − d) − `c] = A+ By , (17)

where the coefficients A and B are defined by the left-hand side of (17),

A = `c −
h

yw − h
[κ(yw − d) − `c] , B =

1

yw − h
[κ(yw − d) − `c] .

Further, Macdonald assumed that within the layer connecting the canopy
and inertial layer, the friction velocity is constant, giving

∂u

∂y
=
u∗

`
, (18)

where ` is represented by (17). Integrating (18) gives the velocity in the
connecting layer of the form

u(y) =
u∗

B
ln

(
A+ By

A+ Bh

)
+ uh . (19)

Here the constant of integration was chosen to meet the boundary condition
u = uh at y = h . At the matching point y = yw formula (19) should give
the same value as the semi-logarithmic law (13), that is

u∗/uh

B
ln

(
A+ Byw
A+ Bh

)
+ 1 =

u∗/uh

κ
ln

(
yw − d

y0

)
. (20)

Relation (20) presents an implicit equation with respect to the coordinate yw,
which needs to be found. Calculations [3] based on available experimental
data showed that roughly yw/h ≈ 2 .
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The above analysis identifies the velocity profiles in the three layers: canopy
layer (14), connecting layer (19), and inertial (semi-logarithmic) layer (13).
Using the profiles, it is easy to get expressions for the turbulent diffusion
coefficient for momentum in each layer. Rearranging the Prandtl formula for
the stress, `2(∂u/∂y)2 as (`2∂u/∂y)∂u/∂y = Dmom∂u/∂y , we have

Dmom = `2
∂u

∂y
.

Finally, we assume that the diffusion coefficient for the passive substance in
each layer is proportional to Dmom [8],

D = KDmom . (21)

The diffusion coefficient is continuous through the layers.

The transfer equations (2), boundary conditions (3) and diffusion coefficient
expressed by (21) form a self-consistent model involving the following inde-
pendent dimensional parameters: the friction velocity u∗, thickness of the
inertial layer H, height of the canopy h, and frontal area density of the
canopy λ. As for the roughness height, y0, and displacement height, d, we
assume these to be fractions of the canopy height, h, and, in the final analysis,
to be functions of λ. Choosing the canopy height, h, as the length scale and
friction velocity, u∗, as the velocity scale, we arrive at just two nondimensional
independent parameters: H/h and λ. Note that implicitly the model also
depends on the shape of obstacles—they can be square or staggered.

Figure 1 shows some velocity profiles plotted using values of the parameters
from Macdonald [3] for square cube arrays at various packing densities. Below
the level y/h = 1 lies the canopy layer, above y = yw ≈ 2 lies the semi-
logarithmic layer and between them is the matching layer.

From the formulated model we derived expressions for the advection coeffi-
cient, g1, and diffusion coefficient, g2. Due to space limitations we do not
present them in this article; they are very large and we plan to report them
elsewhere. However, we analyse some of their features here. It is interesting
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Figure 1: Mean velocity profiles for different λ for square cube arrays.

to compare the results for g1 and g2 with those for the smooth channel flow
analysed by Strunin [9]. In the limit of very large Reynolds numbers he
obtained

g1 → −
1

κ
lnR = −

1

κ
ln

(
u∗H

ν

)
,

where the Reynolds number is based on the total depth of the channel, that
is R = u∗H/ν with ν standing for the kinematic viscosity. Taking the limit
in our resulting formula for g1 as H→∞ , we get

g1 → −
h

H

{
H− d

hκ
ln

(
H− d

y0

)
−
H

hκ

} → −
1

κ
ln
H

y0
= −

1

κ
ln

(
u∗H

ν
· ν

u∗y0

)
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Figure 2: The advection coefficient versus total depth for different λ.

= −
1

κ

[
ln

(
u∗H

ν

)
+ ln

(
ν

u∗y0

)]→ −
1

κ
ln

(
u∗H

ν

)
, (22)

which is exactly the earlier result given above. From (22) we see that the
advection coefficient for the canopy flow is smaller in absolute value than that
for the smooth channel flow. The reason for this is the negative second term
in the square brackets. It represents the inverse Reynolds number based on
the roughness height, y0; although y0 is small, the velocity is large so that
the Reynolds number is large enough. From a physical viewpoint, the canopy
just slows down the flow relative to the smooth flow with the same shear
stress. The advection coefficient g1 is the depth average velocity; accordingly,
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Figure 3: The diffusion coefficient versus total depth for different λ.

for the canopy flow, it is smaller in absolute value. Analysing the resulting
formula for the diffusion coefficient g2 (also omitted in this short article) in
the limit H→∞ , we find

lim
H→∞g2 =

1

4Kκ3
H

h
. (23)

This conclusion also agrees with the result of earlier work [9]. Figures 2 and 3
present numerical results for our canopy model for finite depths.
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4 Conclusion

We constructed an averaged model of shear dispersion in the turbulent flow
near a canopy. The core of the model is the standard advection-diffusion
equations (2) with no-flux boundary conditions (3). The model contains as
independent dimensional parameters the friction velocity u∗, total thickness
of the flow H, height of the canopy h, and frontal area density of the canopy λ.
The model is reduced to the averaged form (1) by the centre manifold
procedure. The advection and diffusion coefficients, governing the transfer of
substances along the flow, are found in terms of the independent parameters.
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