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Prandtl number scaling of natural convection
of the flow on a heated inclined flat plate
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Abstract

A new scaling analysis has been performed for the unsteady natural
convection boundary layer under a downward facing inclined plate
with uniform heat flux. The development of the thermal or viscous
boundary layers is classified into three distinct stages including an early
stage, a transitional stage and a steady stage, which is clearly identified
in the analytical as well as in numerical results. Earlier scaling shows
that the existing scaling laws of the boundary layer thickness, velocity
and steady state time scales for the natural convection flow on a
heated plate of uniform heat flux provide a very poor prediction of
the Prandtl number dependency. However, those scalings performed
very well with Rayleigh number and aspect ratio dependency. In
this study, a modified Prandtl number scaling is developed using a
triple-layer integral approach for Prandtl number larger than unity.
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In comparison to the direct numerical simulations, the new scaling
performs considerably better than the previous scaling.
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1 Introduction

Natural convection heat transfer along an inclined surface is frequently en-
countered in nature and in engineering devices, such as solar water heaters
and attic roof spaces. Parallel to the classic cases, such as vertical or hori-
zontal plates, studies on natural convection along an inclined plate have also
received considerable attention of the researchers due to its direct engineering
application [1, 2, 3, 4, 5, 6]. Several methodologies are being used including
experimental, numerical and mathematical analysis previously. Recently,
scaling analysis was widely used to analyse the transient boundary layer de-
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velopment adjacent to the downward facing inclined surface for both heating
and cooling cases [3, 4, 5, 6].

After orientation of scaling analysis for both unsteady and steady boundary
layer in a rectangular enclosure by Patterson and Imberger [7], scaling analysis
is extensively used in many other geometries and thermal forcing conditions [8,
9, 10, 11, 12, 13, 14]. The main reason for considering scaling analysis is
that it is a cost-effective way that is applied for understanding the physical
mechanism of the fluid flow and heat transfer before performing any laborious
work. We know not all terms of the governing equations are important at all
the time of boundary layer development. Therefore, the scaling analysis is
performed by comparing relative terms (two or three dominant terms) in the
governing equation in a specific stage of the flow development. However, the
obtained results are correct to one order of magnitude.

Only sudden and ramp temperature boundary conditions are considered to
perform the scaling analysis of the semi-infinite inclined flat plate. However,
scaling analysis of the boundary layer due to uniform heat flux on the boundary
is still unrevealed for this geometry. Therefore, we attempt to deal with the
scaling analysis as a result of uniform heat flux condition on the inclined
surface in this study. To perform this, a recently introduced three-region
scaling analysis for the development of the boundary layer adjacent to a
downward facing inclined heated flat plate is considered [3, 4, 10]. Emphasis
has been given to show the dependency of Prandtl number (Pr > 1). We
have achieved the scaling relations of the velocity, thermal and viscous layer
thicknesses in the different stages of the boundary layer development. We
have also obtained the time scale of the transition of the flow to a steady
state. The scaling results are verified by a series of numerical simulations for
different flow parameters: Rayleigh number (Ra), Prandtl number (Pr) and
slope of the plate (A). The numerical results agree very well with the scaling
results.
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Figure 1: Schematic of the geometry and the coordinate system.

2 Formulation and scaling analysis

We consider the flow resulting from an initially motionless and isothermal
Newtonian fluid with Pr > 1 adjacent to a downward facing inclined heated
plate due to uniform heat flux. As seen in Figure 1, an inclined flat plate
of heated length L is placed in the fluid which is initially stationary at a
temperature T0. Considering the plate as the hypotenuse of a right angled
triangle, then the height is h, the length of the base is l and the angle that
the plate makes with the base is φ.

The fluid flow and heat transfer under the inclined plate is governed by
the following two dimensional Navier–Stokes and energy equations with the
Boussinesq approximation:

∂U

∂X
+
∂V

∂Y
= 0 , (1)

∂U

∂t
+U

∂U

∂X
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∂Y
= −

1
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(
∂2U

∂X2
+
∂2U

∂Y2

)
+ gβ sinφT , (2)
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= κ
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. (4)

Initially, the fluid is quiescent and isothermal. The temperature condition on
the plate is

∂T

∂n
= −Γw = −

q′′

k
, (5)

where n is the unit vector normal to the plate surface.

We know that the flow development due to natural convection is determined
by three governing parameters: the Rayleigh number (Ra), the Prandtl
number (Pr) and the slope (A). They are defined, respectively, as

Ra =
gβΓwh

4

κν
, Pr =

ν

κ
, A =

h

l
. (6)

2.1 Early stage

Figure 2 shows a three-region structure for the boundary layers for Pr > 1.
As seen, the peak velocity Um occurs within the thermal boundary layer, δT ,
at a distance δT −δi (viscous inner layer) from the wall. Also, there is a region
of flow outside δT where the flow is not directly driven by the buoyancy, but
is the result of diffusion of momentum. Therefore, in regions i and ii, the
balance is between viscosity and buoyancy. However, in region iii the balance
is between viscosity and inertia, since there is no buoyancy there. A brief
of the derivation of scalings is presented here due to brevity. The detailed
derivation is to be found in the work of Saha et al. [3, 4, 10, 13]. Initially,
the balancing terms in the energy equation (4) is the unsteady term and the
conduction term, which gives

δT ∼ κ
1/2t1/2, (7)
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Figure 2: A schematic of the temperature and velocity profiles normal to
the inclined plate at its mid point: the thermal boundary layer is O(δT ); the
viscous boundary layer is O(δv); and δi is the scale for the distance between
the maximum velocity and δT . Regions i, ii and iii are shown on the figure.

This scaling is valid until the convection term becomes important. At the
same time, the correct balance in the momentum equation (2) is between the
viscosity and the buoyancy,

0 ∼ ν
∂2U

∂Y2
+ gβ∆T sinφ (8)

where ∆T , the total temperature variation over the boundary layer, is
of O(ΓwδT). Using (7), this is written as

∆T ∼ Γwκ
1/2t1/2. (9)
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In region i (the inner viscous layer), the balance (8) gives

Um ∼
gβΓwδT sinφ

ν
(δT − δi)

2 (10)

By integrating (8) from (δT − δi) to δT we get the velocity scale in region ii,

Um ∼
gβΓwδT sinφ

ν
δi(δv − δT + δi)

2. (11)

From (10) and (11) we obtain

δi ∼
δ2T

δT + δv
(12)

where δv ∼ ν
1/2t1/2. Consequently,

δT − δi ∼ δT −
δT

1+ Pr1/2
∼

Pr1/2

1+ Pr1/2
δT , (13)

Finally, the unsteady velocity scale becomes

Um ∼
Ra κ5/2

h4
A

(1+A2)
1/2

(
Pr1/2

1+ Pr1/2

)2
t3/2. (14)

2.2 Steady stage

As time increases, more heat is convected away through the boundary layer.
Hence, the boundary layer approaches a steady state when convection balances
conduction, that is

Um
∆T

L
∼ κ
∆T

δ2T
, (15)
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Therefore, the steady state time scale and the corresponding velocity, thermal
layer thickness and surface temperature scales are obtained as

ts ∼
h2

Ra2/5 κ

(
1+A2

A2

)2/5(
1+ Pr1/2

Pr1/2

)4/5
, (16)
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(
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)1/10(
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)4/5
, (17)
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h
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(
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)1/5(
1+ Pr1/2

Pr1/2

)2/5
, (18)
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h

Ra1/5

(
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)1/5(
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)3/5
, (19)

Tws ∼ ΓwδTs ∼ Γw
h

Ra1/5

(
1+A2

A2

)1/5(
1+ Pr1/2

Pr1/2

)2/5
. (20)

3 Non-dimensionalization

To verify the various scales, numerical solutions of the full Navier–Stokes
equations and energy were obtained for a range of Ra, Pr and A values. For
convenience the following sets of expressions are used to normalize equa-
tions (1)–(4),

x =
X

h
, y =

Y

h
, u =

U

U0
, v =

V

U0
, (21)

τ =
t

h/U0
, p =

P

ρU20
, θ =

T

Γwh
,

where x, y, u, v, θ, p and τ are the normalized forms of X, Y, U, V , T , P
and t, respectively, and where U0 = (κRa1/2)/h is the characteristic velocity
scale used by Saha et al. [4].
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Using the above transformations (21), the non-dimensional governing equa-
tions take the form

∂u

∂x
+
∂v

∂y
= 0 , (22)
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In the initial stage the non-dimensional scales are

∆T ∼ θw ∼
τ1/2

Ra1/4
, (26)

∆T − ∆i ∼
Pr1/2

1+ Pr1/2
τ1/2

Ra1/4
, (27)
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1
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A
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(
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)2
τ3/2. (28)

In the steady stage the non-dimensional scales are
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(
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A2

)2/5(
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)4/5
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∆Ts − ∆is ∼
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(
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. (34)

4 Numerical technique

Equations (22)–(25) were solved along with the initial and boundary conditions
using the simple scheme. The Finite Volume scheme was chosen to discretize
the governing equations, with the quick scheme approximating the advection
term. The diffusion terms were discretized using central differencing with
second order accurate. A second order implicit time-marching scheme was
also used for the unsteady term. The detailed numerical procedure is found
in the work of Saha et al. [3, 4, 5, 6]. The same geometry and mesh size
considered by Saha and Khan [3] and Saha [4] were also adopted in this study.

5 Results and discussion

In this section the computed time series data of the maximum velocity parallel
to the plate (um) are recorded along the line x = 0.5 , which is sufficiently far
from the leading edge to avoid any leading edge effect. This data validates
the velocity scale.

The time series of the non-dimensional maximum velocity parallel to the
plate with unsteady velocity scale (28) is plotted in Figure 3 for different
values of Ra, Pr and A. Initially, all lines for the different Rayleigh numbers,
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Figure 3: Time series of the maximum velocity parallel to the plate at
x = 0.5 for all cases considered: um Ra1/4(1+A2)1/2(1+Pr1/2)2/[APr] plotted
against τ3/2.

Prandtl numbers and aspect ratios lie together on a straight line through the
origin. This indicates that the scaling relation (28) for the unsteady velocity
is appropriate.

To validate the steady state velocity scale, the time series of maximum velocity
parallel to the plate is again plotted in Figure 4. Figure 4(a) represents the
time series of um for varying three governing parameters, Ra, Pr and A.
The three stages of flow development are seen clearly in this figure. In the
initial stage the maximum velocity increases due to heat conduction through
the heated plate. A small transition of the boundary layer, as a form of
overshoot, is also seen when the conduction term in the energy equation (4)
balances with the convection term. The flow becomes steady state afterwards.
Figure 4(b) depicts the same time series as in Figure 4(a) but um and τ are
scaled by ums (30) and τs (29) respectively. All scaled time series approach the
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Figure 4: Time series of the maximum velocity parallel to the plate at
x = 0.5 for all cases considered: (a) computed data and (b) uRa1/10A1/5(1+
Pr1/2)4/5/[(1+A2)1/10 Pr2/5] plotted against τA4/5 Pr2/5 /[Ra1/10(1+A2)2/5(1+
Pr1/2)4/5].
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same horizontal straight line at the steady stage, confirming that the scaling
relation (30) is the correct scaling for um at the steady state. Figure 4(b)
also shows that the peaks of all nine scaled time series occur almost at the
same scaled time, validating the scaling relation (29).

Figure 5 illustrates the numerical results of the average surface temperature of
the heated inclined plate. The computed time series of the surface temperature
are plotted in Figure 5(a) for different parameters considered here. There
are significant effects of those parameters on the surface temperature. The
temperature is normalized with its steady state scaling value (34) and the
time is normalized with the steady state time scale (29) and are re-plotted in
Figure 5(b). Consequently, all curves for the different parameters collapse
together onto a single curve, confirming the scaling relation of temperature
at the steady stage (34) and the steady state time scale (29). Thickness
scale for both thermal and viscous boundary layer can be easily validated
by calculating those profiles along the line x = 0.5 at any time of the flow
development [3, 4, 10, 13, e.g.].

6 Conclusions

Unsteady fluid flow and heat transfer due to natural convection under a
downward facing heated inclined flat plate is examined by scaling analysis
for Prandtl number, Pr > 1. The scaling shows a strong Pr dependency on
the velocity field in both the initial stage or the conductive phase and in
the steady state stage or the convective phase. The scaling relations were
verified by full numerical solutions for various parameters considered here.
Numerical results demonstrate that the scaling relations are able to accurately
characterize the physical behaviour in each stage of the flow development,
including the initial stage, the transitional stage and the steady state stage
over the Prandtl number range considered. The scaling relations are formed
based on the established characteristic flow parameters of the maximum
velocity in the boundary layer (um), the time for the boundary layer to reach
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Figure 5: Time series of the surface temperature on the inclined plate for all
cases considered: (a) computed data and (b) θRa1/5A2/5 Pr1/5 /[(1+A2)1/5(1+
Pr1/2)2/5] plotted against τA4/5 Pr2/5 /[Ra1/10(1+A2)2/5(1+ Pr1/2)4/5].
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the steady state (τs) and the thermal (∆Ts) and viscous (∆vs) boundary layer
thickness. Through comparisons of the scaling relations with the numerical
simulations, we found that the scaling results agreed very well with the
numerical simulations. In particular, in this study the multiple region scaling
accurately predicted the Prandtl number dependency of the inner velocity
length scale, ∆Ts − ∆is, and the velocity maximum um, quantities that were
poorly predicted using a single region scaling.
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