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Abstract

Food processing wastewaters and slurries typically contain high
concentrations of biodegradable organic matter. Before the wastewater
can be discharged, the pollutant concentration must be reduced. One
way to achieve this is by using a biological species (biomass) that con-
sumes the organic matter (substrate). We investigate an unstructured
kinetic model for a bioreactor with a variable yield coefficient, taking
into account the death rate of the microorganisms. The growth rate is
given by a Contois expression, which is often used to model the growth
of biomass in wastewaters containing biodegradable organic materials.
The analysis shows that the system has natural oscillations for some
ranges of the parameters. We also investigate the effects of the death
rate parameter on the region of periodic behaviour.
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1 Introduction

Many industrial processes, particularly in the food industry, produce slur-
ries or wastewaters containing high concentrations of biodegradable organic
materials. Before these contaminated wastewaters can be discharged, the
concentrations of pollutants must be reduced. Discharge to sewer may be
possible but expensive, discharge to the environment would breach cod limits.
A method which has been extensively employed to remove biodegradable
organic matter is biological treatment. In this process, the wastewater (or
slurry) is passed through a bioreactor containing biomass which grows by con-
suming the pollutants. The growth of the biomass produces more biomass and
other products, a mixture of carbon dioxide, methane, water and biological
compounds.

Many mathematical models for the biological treatment of wastewater use
Monod kinetics. However, extensive experimental work has shown that the
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anaerobic and aerobic degradation of wastewater originating from industrial
processes is often better described by the Contois growth rate expression [1,
2, 3, 4, 5, 6]. Thus, in this work the degradation of a biodegradable organic
material is represented by the Contois growth rate expression [3].

Only a few mathematical studies have used the Contois model to simulate
the biological treatment of wastewater [1, 2]. Nelson and Sidhu [2] analysed a
well-mixed continuously stirred bioreactor using a Contois expression with a
variable yield coefficient. They found that there are regions in the parameter
space in which a Hopf bifurcation occurs. Ajbar et al. [1] extended this model
to take into account oxygen transfer limitations. Neither of these studies [1, 2]
considered the death rate of the microorganisms.

We study the behaviour of a generalised reactor model that encompasses a
continuous flow bioreactor and an idealised continuous flow membrane reactor
as limiting cases with microorganism death rate. The specific growth rate of
the biomass is assumed to be given by a Contois expression [3] with a variable
yield coefficient.

We find the steady state solutions, determine their stability, and obtain
asymptotic solutions in the limit of high residence times. We determine the
conditions for washout to occur and the regions of parameter values for which
periodic behaviour can be generated.

The main contributions of this study are the following.

1. Studying the effect of the death rate with a variable yield coefficient on
the bioreactor.

2. Studying a generalised reactor model, including a continuous flow biore-
actor and an idealised continuous flow membrane reactor as limiting
cases.
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1.1 The dimensional model

The model equations are

V
dS

dt
= F(S0 − S) − VX

µ(S,X)

Y(S)
, (1)

V
dX

dt
= −FβX+ VXµ(S,X) − KdVX , (2)

for the specific growth rate (Contois models)

µ(S,X) = µm

(
S

KsX+ S

)
, (3)

residence time

τ =
V

F
, (4)

and yield coefficient

Y(S) = α+ γS , (α,γ > 0). (5)

The units that the concentrations of the substrate species, S, and the mi-
croorganisms, X, are measured in are denoted by |S| and |X| respectively. The
parameters in the model are:

• F, the flow rate through the reactor (dm3day−1);

• Kd, the death coefficient (day−1);

• Ks, the saturation constant (|X||S|−1);

• S, the substrate concentration within the reactor (|S|);

• S0, the concentration of substrate flowing into the reactor (|S|);

• V , the volume of the reactor (dm3);
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• X, the microorganism concentration within the reactor (|X|);

• t, the time (day);

• α, the yield factor (|X||S|−1);

• γ, a constant in the yield coefficient (|X||S|−2);

• µ(S,X), the specific growth rate model (day−1);

• µm, the specific growth rate parameter (day−1); and

• τ, the liquid residence time (day).

The parameter β defines the reactor model for the reactor. The choice
β = 1 gives a continuous flow reactor whereas β = 0 gives an idealised
membrane reactor, in which all of the microorganisms are forced to remain
in the reactor vessel. The choice 0 < β < 1 gives a non-idealised membrane
reactor. In this case some of the microorganisms leave the reactor vessel while
some stay in the reactor vessel. For a non-idealised membrane reactor to be
operationally effective we require 0 < β� 1 . Most modern membranes are
very close to ideal, the intermediate values of β represent a settler rather
than a membrane. It is assumed that the operating environment variables
such as the temperature and pH are held constant.

1.2 The dimensionless model

The system of differential equations (1,2) are written in dimensionless form by
introducing dimensionless variables for the substrate concentration S∗ = S/S0 ,
the microorganism concentration X∗ = KsX/S0 , and time t∗ = µmt ,

dS∗

dt∗
=
1

τ∗
(1− S∗) −

S∗X∗

(α∗ + γ∗S∗)(S∗ + X∗)
, (6)

dX∗

dt∗
=
−βX∗

τ∗
+

S∗X∗

S∗ + X∗ − K∗
dX

∗. (7)
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In Equations (6,7), K∗
d = Kd/µm is the dimensionless death rate, α∗ = Ksα is

the dimensionless yield coefficient, τ∗ = Vµm/F is the dimensionless liquid
residence time, and γ∗ = γKsS0 is a dimensionless constant in the yield
coefficient. In Equations (6,7) the main experimental control parameter is
the dimensionless residence time τ∗.

We investigate this model with the assumptions that: the concentration of
substrate entering into the reactor and the death rate are both positive, S0 > 0 ,
K∗
d > 0 . We assume in the following that 0 < K∗

d < 1 .

2 Results

In Section 2.1, we show that there are two physically meaningful steady state
solution branches. These are a washout branch and a no-washout branch.
In Section 2.1.1, the stability of the washout solution is determined. The
Hopf bifurcation on the no-washout state is discussed in Section 2.1.2. In
Section 2.2, the steady state diagrams are presented.

The xpp [7] software was used to obtain the steady state diagrams. The
standard representation is: solid lines are stable steady states; dotted lines
are unstable steady states; filled-in squares are Hopf bifurcation points; open
circles are unstable periodic orbits; and filled-in circles are stable periodic
solutions.

2.1 Steady state solution branches

The steady state solutions of the system of equations (6) and (7) are the
following.

• The washout branch:
(S∗,X∗) = (1, 0). (8)
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• The no-washout branches:

(S∗,X∗) =

(
Ŝ∗,

(α∗ + γ∗Ŝ∗)(1− Ŝ∗)

β+ τ∗K∗
d

)
, (9)

Ŝ∗ =
−b

2a
+

√
b2 − 4ac

2a
, (10)

aŜ∗2 + bŜ∗ + c = 0 , (11)

Where a, b, and c are defined by

a = γ∗, b = (1− K∗
d)τ

∗ + α∗ − β− γ∗, c = −α∗.

Note that the coefficient a is strictly positive whereas c is strictly negative.
This means that the solution (7) for S∗ is always positive. From Equation (9)
the steady state solution is positive (physically meaningful) when 0 < S∗ < 1 .
The residence time at which we have S∗ = 1 is

τ∗ = τ∗cr =
β

1− K∗
d

. (12)

Thus, the no-washout steady state is physically meaningful when the residence
time satisfies

τ∗ > τ∗cr =
β

1− K∗
d

. (13)

Implicity differentiating Equation (11), we obtain,

dS∗

dτ∗
=
(1− K∗

d)S
∗

−2aS∗ − b
< 0 because S∗ >

−b

2a
. (14)

Thus the steady state effluent concentration is a decreasing function of the
residence time. At large residence times, the approximate value of the
microorganism concentration and substrate concentration are

X∗ ≈ α∗

K∗
dτ

∗ +O

(
1

τ∗2

)
, 0 < K∗

d < 1 , (15)

S∗ ≈ α∗

(1− K∗
d)τ

∗ +O

(
1

τ∗2

)
, 0 < K∗

d < 1 . (16)
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2.1.1 Stability along the washout branch

Under washout conditions the effluent concentration is equal to the inflow
concentration. Thus this state of operation must be avoided. The eigenvalues
of the Jacobian matrix at the washout state are

λ1 = −
1

τ∗
< 0 , λ2 =

−β+ τ∗(1− K∗
d)

τ∗
.

Hence, the washout branch is stable when

τ∗ <
β

1− K∗
d

. (17)

Equation (17) shows that a perfect membrane cannot have washout, a good
membrane could only have washout at a very small residence time.

2.1.2 Hopf bifurcation on the no-washout state

In this section we investigate the stability of the no-washout state by evaluating
the Jacobian matrix in the no-washout state. We find

J(S∗,X∗) =

[
J11 J12

J21 J22

]
, (18)

where

J11 = −
1

τ∗
+

X∗ (γ∗S∗2 − α∗X∗)
(α∗ + γ∗S∗)

2 (X∗ + S∗)
2

, J22 = −
X∗S∗

(X∗ + S∗)
2

,

J21 =
X∗2

(X∗ + S∗)
2

, J12 = −
S∗

2

(α∗ + γ∗S∗) (X∗ + S∗)
2

.

The conditions for both eigenvalues to be zero are J11J22 − J21J12 = 0 and
J11 + J22 = 0 . Some algebra shows that the first condition cannot be satisfied
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for a physically meaningful solution and as a result a double zero eigenvalue
degeneracy cannot occur.

The physical significance of a Hopf bifurcation is that it is one of the two main
mechanisms by which periodic behaviour is generated in systems of nonlinear
differential equations, the other being a double zero eigenvalue bifurcation.
The conditions for a Hopf bifurcation to occur are J11J22 − J21J12 > 0 and
J11 + J22 = 0 . The first condition is always satisfied. The values of the
residence time at which Hopf bifurcations occur are found to satisfy the
equations,

ψ = r1X
∗2 + r2X

∗ + r3 = 0 , (19)

b1 =
β+ K∗

dτ
∗

τ∗(1− K∗
d) − β

, r1 = b1
2γ∗2 [(1+ b1)2 + τ∗b1] ,

r2 = b1γ
∗ [2α∗(1+ b1)

2 + τ∗b1(2α
∗ − 1)

]
,

r3 = α
∗ [α∗(1+ b1)

2 + τ∗(b1α
∗ + 1)

]
.

Note that when τ∗ > τ∗cr then b1 > 0 and hence r1 and r3 are positive.

From these equations, the following results are obtained.

1. When the yield coefficient is constant (that is, γ = 0), the trace is
negative and the Hopf bifurcation conditions (19) are not satisfied.
Thus the variability of the yield coefficient is a significant condition for
producing a natural oscillation. Under these conditions, the no-washout
branch is always stable.

2. The coefficient r2 is positive when α∗ > 1/2 and as result Equa-
tion (19) is the sum of positive terms and cannot have zero value.
Thus the Hopf bifurcation cannot occur when

α∗ >
1

2
. (20)

3. For the membrane reactor (β = 0), the condition given in (19) simplifies
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considerably. After some algebra the solution of Equation (19) is

X∗ =
−r2 ±

√
τ∗(1− K∗

d)(K
∗
d (1− K∗

d) (4α
∗ − K∗

d) τ
∗ − 4α∗)

2r1
. (21)

This solution is complex when K∗
d > 4α∗. Thus, Hopf bifurcations

cannot occur when

K∗
d > 4α

∗. (22)

A degenerate Hopf bifurcation is where two Hopf points annihilate each other
in an unfolding diagram (a H21 degeneracy). The conditions for this to occur
are

J11J22 − J21J12 > 0 , ψ = 0 ,
dψ

dτ∗
= 0 . (23)

When α∗ = 0.01 and K∗
d = 0.01 the solutions that satisfy the H21 degenerate

conditions are

(γ∗, τ∗) = (13.328, 14.741), (γ∗, τ∗) = (0.022, 1.077). (24)

Natural oscillations cannot occur in the regions 0.022 > γ∗ and γ∗ > 13.328 .
They do occur in the region 0.022 < γ∗ < 13.328 .

2.2 Numerical results

Figure 1 shows two steady state diagrams. Each steady state diagram contains
two curves for the washout (S∗ = 1) and the no-washout states (S∗ < 1). Our
choice of the values of the parameter γ∗ in Figure 1 are motivated by the
values in Equation (24). In Figure 1(a) there are two Hopf bifurcation points
because the value of γ∗ is in the region 0.022 < γ∗ < 13.328 . Between the
two Hopf bifurcation points, the no-washout branch is unstable and there are
stable periodic solutions.
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(a) γ∗ = 1.05
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(b) γ∗ = 0.01

Figure 1: Dimensionless effluent concentrations as a function of the dimen-
sionless residence time. Parameters β = 1 , K∗

d = 0.01 , α∗ = 0.01 .
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Figure 2: Unfolding diagram for a single reactor showing the Hopf bifurcation
locus. Parameters β = 1 , K∗

d = 0.01 , α∗ = 0.01 .

In Figure 1(b) there are no periodic solutions as the value of γ∗ is outside the
critical region and the no-washout solution is always stable provided τ∗ > τ∗cr .
Figure 2 is an unfolding diagram for the two Hopf bifurcations in Figure 1(a)
in the γ∗-τ∗ plane. Figure 2 shows the values of the residence time at which
a Hopf bifurcation occurs as a function of γ∗: the Hopf bifurcation points
are only found in the region (0.022 < γ∗ < 13.328) and they destroy each
other at the H21 degeneracy given by equation (24). In the region between
the H21 degeneracies, periodic oscillations occur. For either large or small
values of γ∗, including the constant yield case (γ∗ = 0), periodic behaviour
does not occur. The periodic solutions are undesirable in this system because
the average effluent concentration of a periodic solution is higher than the
corresponding value of the unstable steady state solution.

Figure 3 shows H21 degeneracy curves, defined by (23), in the α∗-γ∗ plane.

Figure 3(a) shows that there is a critical value of the death rate, K∗
d =

0.2872 . If 0 < K∗
d < 0.2872 then the H21 curve has two limit points (α∗

1,Lp >
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Figure 3: H21 degeneracy diagram. Parameter β = 1 .
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Figure 4: Diagram showing the domain of the limit point locus in parameter
spaces (K∗

d, α
∗). Parameter β = 1 .

α∗
2,Lp). Depending upon the value for α∗ there may be no, one, two or three

H21 degeneracies. For example, Figure 3(b) shows that when K∗
d = 0.2 there

are two limit points and accordingly, in the region between 0.049 < α∗ < 0.050
there are three H21 degeneracies. When 0 < K∗

d < 0.2872 there are no H21
points, and consequently no Hopf bifurcations, when the yield constant
coefficient is sufficiently high, α∗ > α∗

1,Lp .

When K∗
d > 0.2872 the H21 degeneracy curve has no limit points and there is

always one H21 degeneracy, see the curve on Figure 3(a) when K∗
d = 0.4 . If

the value of γ∗ is below the H21 degeneracy curve, then there are no Hopf
bifurcation points on the steady state diagram. If it is above, then the steady
state diagram contains two Hopf bifurcations.

Figure 4 summarises the information about limit points that is provided in
Figure 3(a): the limit point α∗

1,Lp > α
∗
2,Lp is possible for all values of K∗

d less
than the critical value K∗

d = 0.2872 .
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3 Conclusion

We analysed the behaviour of a bioreactor using a Contois growth model with
a variable yield coefficient. We extended earlier work [2] by including the
death rates of microorganisms and by using a generalized bioreactor model
which includes as special cases the continuous flow and membrane reactors.

We determined a critical value of the residence time at which the washout
solution loses stability. This critical value is the minimum residence time
that can be used. Our investigation of the reactor’s periodic behaviour shows
that there is a wide range of parameter values for which natural oscillations
occur. The analysis of the effect of the death rate on the oscillatory behaviour
shows that there is a critical value of the death rate (K∗

d = 0.2872). If the
death rate is less than this critical value, then there may be between zero
and three H21 degeneracies. If the value of the death rate is higher than the
critical value, then one H21 degeneracy can occur. We have also shown that
the range of the yield constant coefficient for which oscillations are possible
increases for high values of the death rate.

We showed that in the region of periodic behaviour the stable periodic solution
has a higher average effluent concentration than the unstable steady state
solution and consequently the reactor performance decreases.

Acknowledgements RA thanks Dammam University for a PhD Scholar-
ship, and thanks the CSIRO/ANZIAM Student Support Scheme.
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