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Abstract

Preconditioning for the Pressure Poisson Equation, used with the
fractional step Navier–Stokes solvers, is studied. The Pressure Poisson
Equation results from the segregated calculation of the velocity and
pressure in the momentum equations, with the divergence of the veloc-
ity as the source term. The coefficient matrix of the Pressure Poisson
Equation is dependent only upon grid-size, and thus preconditioners
need to be constructed only once initially, and used for all subsequent
time steps. Several preconditioning techniques are studied, including
Jacobi, incomplete matrix decomposition variants, and sparse approxi-
mate inverses. The test case is a three dimensional turbulent channel
flow, with the domain discretised using a structured nonstaggered grid.
Parallel computing is performed on a cluster of processors by message
passing, with domain partitioning to avoid the use of global gather
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and scatter operations and to minimise the effect of communication
bandwidth. The preconditioners are all constructed based on the local
grid partition. For the sparse approximate inverse preconditioners,
cell dependencies are bounded to limit communication across grid
partition boundaries. The effect of a defined sparsity pattern is also
investigated. The optimum sparsity pattern and the dependency on
the neighbouring cells are found to be influenced by the grid ratios in
each axis direction.
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1 Introduction

The fractional-step method solves the Navier–Stokes equations in a segregated
manner, with each momentum equation and a separate pressure equation
solved sequentially. The pressure equation is formed as a Poisson equation
with the divergence of the velocity as a source term, and is often the most time
consuming part in the calculation. To accelerate the convergence of the solver,
preconditioning is applied for the pressure equation. Many preconditioning
techniques have been developed, and were overviewed by Benzi [1] and Saad [2].
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The performance of the preconditioner will generally depend on the case tested,
and thus the best preconditioner for a case may fail on another case [2]. This
study is a continuation of previous work [3]. Whereas Djanali, Armfield and
Kirkpatrick [3] performed the computations sequentially in a single processor,
here the work is extended to parallel computing. Several preconditioning
approaches are tested, including Jacobi, incomplete matrix decomposition
and sparse approximate inverses, and the performances are compared.

The effect of a prescribed sparsity pattern for sparse approximate inverses is
also investigated. The sparsity pattern is determined based upon dependencies
to neighbouring cells in the finite volume discretisation, in a similar manner to
that recently being used on Graphical Processor Units (gpus) [4, 5]. Our study
shows that a sparse approximate inverse with a customised sparsity pattern
has a comparable performance to the original arbitrary-sparse approximate
inverse, and this performance may also contribute to the development of
preconditioning methods on gpus.

2 Preconditioning in fractional step

In the fractional step method, the pressure and velocity terms in the Navier–
Stokes equations are decoupled using a divergence-free velocity constraint.
This results in two separate equations, one involving momentum terms solved
for the velocity and the other for the pressure. Various forms of fractional-
step schemes have been developed to achieve better efficiency and time
accuracy; Armfield and Street [6] overviewed and compared some schemes.
Application of the fractional-step Navier–Stokes method with second order
pressure correction (p2) and negligible body force, using Adams–Bashforth
and Crank–Nicolson methods for the time discretisation of the advective and
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diffusive terms respectively, results in the equations
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where π is the pressure correction and H, G, L and D are the advection,
gradient, Laplace and divergence operators, respectively. The discrete velocity
is v, the discrete pressure p and the time level n. The intermediate velocity
field, v∗, is not necessarily divergence-free. Equation (2) is termed the Pressure
Poisson Equation (ppe). A correction to v∗ is then applied using the gradient
of π to give a divergence-free velocity, vn+1, while π provides an update for
the pressure, that is,

vn+1 = v∗ − ∆tGπ and pn+1/2 = pn−1/2 + π . (3)

Computing the solution of the ppe is often the most time consuming part of
the process, particularly in high accuracy simulations [6]. Thus, accelerating
the convergence of the ppe will significantly affect the overall efficiency of
the Navier–Stokes solver. Since the ppe has a constant coefficient matrix for
a given grid spacing, the preconditioner needs to be constructed only once
and is then recalled in the subsequent iterations.

Preconditioning techniques are generally classified into two types. The first
type is a preconditioning matrix M that approximates the original coefficient
matrix A, or M ≈ A. Examples of this class are Jacobi, Gauss–Seidel,
Successive Over Relaxation (sor) and various forms of Incomplete Lower-
Upper (ilu) preconditioners. While simple methods like Jacobi, Gauss–Seidel
and sor are often not effective, ilu-variant preconditioners greatly improve
the rate of convergence [2]. The Strongly Implicit Procedure (sip) [7] and
Modified Strongly Implicit (msi) [8] are further development of the ilu-
variants specifically on a finite difference grid. The ilu-variants are easy to
construct but the implementation requires forward-backward calculations,
which means they do not parallelise well. The second type of preconditioner
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is the sparse approximate inverse, in which the preconditioner approximates
the inverse of the original matrix, M ≈ A−1. Several studies developed
sparse approximate preconditioners [1]. The most popular are the Sparse
Approximate Inverse (spai) method [9], which is based on the minimisation
of the Frobenius norm, and the factorised sparse Approximate Inverse (ainv)
method [10], which is based on the biconjugation algorithm. Both spai and
ainv use control parameters to limit the number of fills in the preconditioning
matrix M, while the pattern is left arbitrary. The sparse approximate inverses
are expensive in construction but require only matrix-vector products in the
implementation. The ease of implementation in the solver encourages the use
of sparse approximate inverses, particularly with gpu processing. To further
simplify the computation and reduce memory storage, recent studies on gpus
determined the sparsity pattern of the inverses should be dependent only upon
the neighbouring cells, with a seven point stencil in three dimensions [4, 5].
This means in the matrix M each row contains only seven fills at columns
corresponding to the location of the neighbouring cells. In this study the
pattern of the sparsity is extended to include more than seven cell dependency
with various location of cells.

3 Numerical methods

A three dimensional turbulent channel flow is used as a test case, for a Reynolds
number of 180 based on the turbulent friction velocity uτ and channel half-
height h. The channel box is 2h in the wall normal (y) direction, 6.3h in
the streamwise (x) direction, and 3.15h in the spanwise (z) direction. Wall
boundaries are set to no-slip, while the streamwise and spanwise boundaries
are set to periodic. To investigate the effect of a prescribed sparsity pattern
on the approximate inverses, two structured grids are tested. The first grid
contains 75× 125× 75 cells in the x, y and z directions, respectively, with
logarithmic grid spacing used in the y direction and uniform grid spacing
used in other directions. The minimum grid spacing in the y direction is
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∆y = 5.17× 10−4 with a stretching factor of 1.07. The time step used for the
first grid is 10−4. The second grid is discretised uniformly in all directions,
having 284 × 90 × 140 cells in the x, y and z directions, respectively. The
second grid has a the time step of 10−5.

Problems are solved using the p2 pressure correction method. The time dis-
cretisation uses Adams–Bashforth for the advective terms and Crank–Nicolson
for the diffusive terms. Variables are stored in a nonstaggered (collocated)
grid, with spatial central differencing. The iterative solvers used are Jacobi
for the momentum equations, and bicgstab with left preconditioning for
the ppe equation. The iterative solvers are considered converged when the
L2 norm of the residuals becomes less than 10−6. Preconditioners tested
are Jacobi, sor, sip, msi, spai, ainv and approximate inverse with defined
sparsity.

The computations were run on eight cores on two four-core Intel R© Coretm

i7 920 2.67GHz machines. Parallelisation is implemented using the Message
Passing Interface (mpi), with the domain partitioned into eight uniform slices
in the streamwise (x) direction. Each slice boundary contains one ghost cell
in the x direction, in which the value is copied from the next slice boundary
value. No actual matrix is constructed, instead the coefficients of the system
and scalar variables are stored in compact storage based on the finite volume
discretisation.

The sparse approximate inverse preconditioners need care. These precon-
ditioners are built locally in each processor to avoid global gather/scatter
operations and minimise the effect of the communication bandwidth, resulting
in eight Mp preconditioner matrices, where p = 1, 2, . . . , 8. This implies that
node dependencies in local matrix Mp are now bounded in each partitioned
slice. For spai and ainv, the preconditioning matrix is stored in Compressed
Sparse Row (csr) format to allow arbitrary fills inside each domain slice in
the matrix. This format further requires pack and/or reshape functions
to reformat scalar variables, from compact storage to a single vector, in
matrix-vector operations. These functions account for about 16% of the
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pressure solver time. Reducing the reformating time is the reason for the
use of a defined sparsity pattern. With defined sparsity, the approximate
inverse need not be stored in csr format, instead it can stored in compact
storage based on finite differencing, similar to the way the scalar variables
are stored. Because the locations of cell dependencies (or fills in a row, in
terms of a matrix) are known, the coefficients are stored by indexed value,
with indices referring to the positions of the neighbouring cells relative to the
point cell. In this study, extended defined sparsity patterns are investigated.
Table 1 shows different configurations of the sparsity patterns. All patterns
are extended from the basic seven point stencil, and the construction is based
on the minimisation of the Frobenius norm.

4 Results

Statistical data for the turbulent channel flow has been obtained. Figure 1
shows the time-averaged velocity and velocity fluctuations for the two grids
tested, compared to the spectral method of Moser, Kim and Mansour [11].
Previous study showed that preconditioner choice has no effect on the accuracy
of the solution with the same convergence criteria [3], and thus the velocity
profiles for each preconditioner are not shown here. The stretched grid with
sufficiently fine grid spacing in the near wall region shows a good agreement
with the reference. Although the uniform grid shows some discrepancy
compared to the reference, due to the unresolved near wall region, this result
is considered acceptable since the use of the uniform grid is mainly to compare
the effect of the sparsity pattern with the approximate inverse preconditioners.

The effectiveness of preconditioners is compared in terms of the computing
time and number of iterations needed in the pressure solver to achieve con-
vergence. Figure 2 shows the average pressure solver time per time step
for the stretched grid case. The abscissa is the average number of fills in
each row of matrix M, or the average number of cell dependencies for each
cell, denoted by α. Higher α means a higher number of cell dependencies,
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Table 1: Defined sparsity pattern for approximate inverses.
Pattern 1 Pattern 2 Pattern 3
includes one or more
neighbour cell/s in
all x+, x−, y+, y−, z+,
z− directions.

7 cells

13 cells

includes one neighbour
and four corner cells in
all x+, x−, y+, y−, z+,
z− directions.

25 cells

includes one neighbour
cell in x+, x−, z+,
z− directions and
(1+ n) neighbour cells
in y+, y− directions,
with n the number of
extension.

(7+ 2 ∗ n) cells

or a denser matrix M. Jacobi and sor have α = 1 , and sip and seven
point stencil approximate inverse have α = 7 . In spai, the number of fills is
controlled by varying the residual of the Frobenius norm, with lower residual
producing a denser matrix. Similarly, a drop tolerance is set in ainv to limit
the number of fills by omitting entries below the drop parameter. For the
stretched grid, it can be seen that preconditioner choice significantly affects
the convergence rate of the solver. sip and msi are the best preconditioners,
with speeds about ten times faster than that of Jacobi. Considering msi
has a higher number of coefficients, sip is the most efficient preconditioner
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Figure 1: Time averaged velocity profiles compared to dns spectral
method [11].

with lower memory requirement. sor is better than Jacobi, while spai and
ainv perform in between Jacobi and sip with ainv slightly better than
spai for a denser matrix. The performance of spai and ainv may be better
than that reported here because the computation time reported includes the
reformatting time that accounts for about 16% of the pressure cpu time,
although they are still considerably slower than sip and msi. Nevertheless,
the results presented here may differ from those performed on vector machines
or gpus, in which the benefit of having only matrix-vector operations in the
sparse approximate inverse implementation can be fully optimised. Generally,
no significant improvement is achieved by varying the number of fills for
the sparse approximate inverses. Comparison of defined sparsity patterns
shows that Pattern 3, the extended pattern in the y direction, is proven to
be the optimum pattern for this grid configuration with cpu time close to
that of the standard arbitrary sparse approximate inverses. This is logical
since the grid is finer in the y direction. The sparse approximate inverse
with a higher number of cell dependencies is not necessarily an effective
preconditioner; the extended Pattern 1 has a higher computing time even
than Jacobi. Figure 3 shows the average number of pressure iterations per
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Figure 2: Averaged pressure solver time per time step for stretched grid.

time step. The sparse approximate inverse has a relatively lower number
of iterations with a denser matrix M (a better approximation to A−1), but
the higher number of cell dependencies results in a slower computing time.
However, extended Pattern 1 does not show improvement compared to the
basic seven point stencil indicating that increasing the cell dependencies in
this pattern does not provide a better matrix M.

Results for the uniform grid are shown in Figures 4 and 5. Figure 4 shows the
average pressure solver time per time step versus α. As expected, the uniform
grid configuration has a lower condition number, and thus the performance
has less dependency on the choice of preconditioners. sip is still the most
efficient preconditioner, but Jacobi performs well and may be sufficient to use
as an effective preconditioner. spai and ainv have higher computation times
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Figure 3: Averaged number of pressure iterations per time step for stretched
grid.

compared to Jacobi, although once again these values include reformatting
times, which are now increased since the uniform grid has a larger number
of cells compared to the stretched grid. For defined sparsity approximate
inverses, the basic seven point stencil is the optimum pattern and further
extending the pattern is not useful, as shown in Figure 5.

5 Conclusions

This study applies preconditioning in parallel for the ppe of the fractional
step method using mpi. Preconditioner choice has a considerable effect on the
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Figure 4: Averaged pressure solver time per time step for uniform grid.

rate of convergence, particularly for difficult problems with high condition
numbers. Generally, sip is the most effective preconditioner tested. However,
parallelisation of sip and msi implementations can be problematic, while
that of sparse approximate inverses is relatively straightforward. Sparse
approximate inverses have been shown to perform well, and are expected to
perform even better on gpus, in which the benefit of having only matrix-
vector operations in the implementation can be fully optimised. Sparse
approximate inverses may be implemented in domain-partitioned parallel
computing, although the arbitrary sparsity is bounded in each partition slice.
The defined sparsity approximate inverse has comparable performance to spai
and ainv and is easier to apply with finite volume schemes. The optimum
sparsity pattern of the approximate inverse preconditioner is influenced by
grid spacing and grid configuration. A simple adaptive sparsity pattern can
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Figure 5: Averaged number of pressure iterations per time step for uniform
grid.

be further explored to yield a function of the cell aspect ratios and this may
be particularly useful for Poisson preconditioning on gpus.
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