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Numerical stabilisation of motion integration
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Abstract

Explicit time stepping of initial value problems may be unstable
when the highest derivative cannot be isolated. The example of time
domain ship motions is studied, in which instability arises from feed-
back from implied acceleration terms in the hydrodynamic force as-
sociated with the ‘added mass’ of the water surrounding the hull. By
combining the acceleration computed from the hydrodynamic forces
with one obtained by extrapolating the recent motion history a stable
and accurate solution is obtained. The problem is studied using a
simpler approximation after demonstrating its equivalence. The pro-
posed technique may be applied to any problem exhibiting the same
instability.
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1 Introduction and source of instability

While frequency domain ship motion computations are routinely performed
it is becoming increasingly desirable to obtain efficient time domain solutions.
Time domain solutions are necessary to simulate nonlinear phenomena such
as motions in heavy seas or wave impact, but are inherently unstable. Often
an explicit time stepping method is desired, and all the cited stabilisation
techniques fail in these circumstances. A simple technique overcoming these
obstacles is presented and discussed.

Ship motions in waves involve equations essentially of the form F (t) =
mẍ , where x represents a generic motion variable in any of the ship’s degrees
of freedom and F the forces causing that motion. F is calculated by inte-
grating the pressure distribution over the hull surface, where local pressures
take the (linearised) form p = −ρ ∂φ/∂t . In turn, the velocity potential φ
is obtained by solving Laplace’s equation subject to some boundary condi-
tions, including ∂φ/∂n = V · n on the ship’s hull. Finally the local hull
velocity V depends on ẋ. Thus F implicitly depends on ẍ, and it is well
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known that numerical solutions of differential equations are unstable if the
highest derivative cannot be isolated.

To identify more specifically the source of instability consider the equation
of motion for a single degree of freedom in its usual frequency domain form,

(m+ A)ẍ+Bẋ+ Cx = Fw , (1)

where Fw represents the incident and diffracted wave forces, which are inde-
pendent of x, while A, B, C and m are respectively the ‘added mass’ (inertia
of the water surrounding the hull), ‘damping coefficient’ (representing the
energy transported in the radiated waves), hydrostatic stiffness coefficient
and ship mass. The corresponding time domain form is

mẍ = Fw − (Aẍ+Bẋ+ Cx) . (2)

We must recognise that A, B and C are generally weakly time (or more
strictly frequency) dependent, but if we integrate with a small time step we
can treat them as constants over each time step.

In a time domain solution the right hand side of (2) as a whole is known
but it is not decomposed as in (2). Suppose there is a small error ε in ẍ,
which will be apparent only as an error of −εA in the total force at that time
instant. At each time step the error will be amplified by −αA/m (α being
introduced to account for additional effects such as influence of the particular
time stepping algorithm used and the dependence of A on ẍ). This amplifica-
tion factor must have an absolute value less than 1 for an integration method
to be stable.

2 Existing solution methods

It is common practice in analysing ship motion, even in time domain simu-
lations, to avoid the problem by calculating radiation and diffraction forces
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separately. This is not only inefficient but it does not permit the study of
nonlinearities as it relies on superposition. Beck et al. [1] offer an alternative
solution. They argue that ∂φ/∂t is critical to the calculation of hydrody-
namic forces and must be obtained by a backward difference which gives
a poor estimate of the derivative leading to the observed instability. How-
ever, ∂φ/∂t satisfies the same partial differential equation as φ so can be
computed directly avoiding the backward difference. The same singularity
may be used for both φ and ∂φ/∂t, avoiding the need to create and invert
another influence matrix. Unlike φ, which only requires body velocities in
its boundary condition, ∂φ/∂t requires body accelerations. They assume an
acceleration, calculate ∂φ/∂t and hence F , and from F calculate the new
acceleration. Stability is achieved by iterating the process until the assumed
and calculated accelerations agree to within a given tolerance.

The method of Beck et al. [1] is suitable when most of the computational
effort is in assembling and inverting the influence matrix. However, I, for ex-
ample, used a Green function method for evaluating hydrodynamic forces [2],
which, even with no iteration, requires twice as many calculations.

A different approach, formally analysed for linear problems by Kring and
Sclavounos [4], involves separating the fluid velocity potential into an instan-
taneous (infinite frequency) component and a memory component (impulse
response). Thus in effect A in (1) is given a value A0 say, corresponding to
infinite frequency, while the vessel’s impulse response is embodied into the
force Fw. Again this approach was deemed unsuitable as A0 is difficult to
separate and time consuming to compute.

3 Method of stabilisation

A method was sought that was stable, insensitive to initial conditions, gave
accurate results, required a single evaluation of the right hand side of (2),
and could be used with equal time step sizes without the need for iteration
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or evaluation of intermediate values. A technique was developed similar to
that of Kring and Sclavounos [4] in that it separates the instantaneous added
mass (the source of the instability) from the hydrodynamic force. However
a major difference is that it was found to be sufficient to estimate A0 within
a broad range and that it is therefore not necessary to decompose Fw to
compute a precise A0.

The technique employed involves setting the acceleration at each time
step at a weighted average of the value calculated from the hydrodynamic
forces and a value extrapolated from the recent velocity history. Although
neither acceleration on its own leads to stable or accurate motion integration,
the two have errors of opposite sign and, if combined in the right proportions,
give a stable and accurate solution.

Starting with (2), remove the source of instability by adding Aẍ to both
sides. These are both unknown so we estimate A ≈ Ae and x ≈ xe , hence

ẍ(m+ Ae) = F + Aeẍ ≈ F + Aeẍe , (3)

from which
ẍ ≈ µẍc + (1− µ)ẍe (4)

where ẍc = F/m is the calculated acceleration, µ = m/(m + Ae) is a co-
efficient to be determined, and xe is estimated from the immediately prior
velocity history, for example by backwards difference.

To determine when this will stabilise the solution, suppose the error ε at
any given time step is amplified by −ρc using ẍc = F/m (µ = 1) and by +ρe

using ẍe (µ = 0) where ρc, ρe > 1 or the problem is trivially solved. It follows
from (4) that stability requires | − ρc + ρe(1− µ)| < 1 , hence

ρe − 1

ρe + ρc

< µ <
ρe + 1

ρe + ρc

. (5)

Thus a stable solution is obtained for a range of µ. It is shown below that the
limiting values of µ for stability are sharp, the deterioration of the solution
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beyond the range of valid µ values is obvious, and acceptable accuracy is
maintained right up to the limiting µ, so there is little danger of accepting
an erroneous solution.

Finally, we require an estimate ẍe for which ρe > 1 . We use a second
order backward difference approximation to the velocity derivative:

ẍe(t) =
3ẋ(t)− 4ẋ(t−∆t) + ẋ(t− 2∆t)

2∆t
. (6)

Having stabilised ẍ using (4) any standard time stepping method may be
used to integrate it. Here we use a Taylor method with extrapolated third
derivative for slightly improved accuracy:

...
x (t) =

3ẍ(t)− 4ẍ(t−∆t) + ẍ(t− 2∆t)

2∆t
, (7)

ẋ(t+ ∆t) = ẋ(t) + ∆t ẍ(t) +
∆t2

2

...
x (t) , (8)

x(t+ ∆t) = x(t) + ∆t ẋ(t) +
∆t2

2
ẍ(t) +

∆t3

3!

...
x (t) . (9)

It follows from (8) that (6) will give ρe ≈ 1.5 .

4 Constant coefficient simulation

Solution of the full ship hydrodynamic problem is highly computationally
intensive but for the purposes of studying the above stabilisation algorithm
it is sufficient to represent F as

F = Fw − (Aẍ+Bẋ+ Cx) , (10)

where Fw may be arbitrarily specified, A, B and C are treated as constants,
and ẍ on the right hand side is taken as the estimated value, ẍe from equa-
tion (6).
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Figure 1: Behaviour of the numerical integration. Upper half: µ near the
upper stability limit. Lower half: µ near the lower stability limit.
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Validity of this constant coefficient simulation depends on estimate ẍe

reproducing the instability behaviour caused by ẍ in equation (10) . Figure 1
shows it to be extremely successful in this regard. In this figure the constant
coefficient approximation was compared with actual ship motions computed
by a time domain ‘strip theory’ program [3, 2]. It represents a model ship in
free heave oscillation due to an initial displacement (no incident waves, and
other degrees of freedom restrained). Both simulations use the same time
stepping algorithms with a time step size of approximately 0.0362 times the
period of undamped natural oscillation.

The upper half of Figure 1 shows solutions with µ just above, just be-
low, and somewhat lower than the stability threshold. The threshold differs
slightly between the two methods but clearly the behaviour is the same.
An initial “error” is deliberately introduced, resulting in the expected saw-
tooth oscillation implied by ρc > 1 . With the higher µ value the oscillations
gradually grow with error in geometric progression, indicating instability,
while with the intermediate value they gradually decay, indicating that the
integration has just been stabilised. With the lower µ value we see that
oscillations decay much more rapidly, that is, after only a few time steps.
Of course without stabilisation (µ = 1) the divergence would be extremely
rapid. Interestingly, even when unstable the average force follows the sta-
ble form. The displacement graphs for all three µ values (not shown) are
almost indistinguishable because the integrations smooth out the high fre-
quency oscillations, although with the higher µ value the displacement graph
eventually diverges.

Near the lower µ limit (lower half of Figure 1) the instability appeared
as an oscillation at a frequency higher than the natural frequency but much
lower than that of the sawtooth error near the upper µ limit. In the cases
shown the undesired oscillations are decaying, so the solution is by definition
stable, but the rate of decay for the lowest µ value shown is less than that of
the true motion so the solution will never be accurate.

The integration algorithm, and its simulation by the constant coefficient
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Figure 2: Limiting values of µ for stability at ω = ωn : (a) various A/m
(ζ = 0.2 , ωn∆t = 0.25); (b) various ∆t (ζ = 0.2 , A/m = 1.0); (c) various ζ
(ωn∆t = 0.25 , A/m = 1.0).

approximation, performed equally well with problems involving forces oscil-
lation and multiple degrees of freedom.

5 Limiting µ for stability

Equation (5) shows that there are upper and lower limits of µ for which a
stable solution may be obtained, and this section investigates these limits
as determined empirically using the constant coefficient approximation de-
scribed in the previous section. This does not necessarily imply accuracy of
the solution, which will be discussed in the subsequent section.

I hypothesised that ρc takes the form αA/m and ρe ≈ 1.5 , suggesting
c1/(A/m+ c2) as the form of the µ limits, with c1 and c2 constants. Fitting
such a form to the data of Figure 2(a) gives

0.22

A/m+ 1
< µ <

1.14

A/m+ 1
, (11)
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(exact to three significant figures) which on comparison with (5) implies
ρe = 1.48 and ρc = 2.18A/m + 0.69 , agreeing closely with the expected
result. These relations are shown below to vary with damping ratio and time
step size, but in general retain the same forms.

Of interest is that for small A/m (< 0.14 in the above case) the problem is
inherently stable, but this is rarely the case for ship motions. A/m = 1 for a
semicircle at infinite frequency in heave or sway motion, while ships typically
have A/m > 1 in heave, pitch and sway motions due to their higher beam to
draught ratios. However, as stated above, for time domain calculations it is
rarely practical to estimate the added mass before calculating motions so it
is desirable that a reasonable range of µ exists. Figure 2(a) shows that this
is the case.

Figure 2(b) shows that ∆t profoundly affects the limiting values of µ. In
particular, there is a maximum ∆t for which the method works; however,
this corresponds to a time step size much larger than would ever be used in
practice (3.7 time steps per natural period of oscillation). A more realistic
maximum time step size of say 1/12th of the natural period, as might be
required for moderate accuracy (ωn∆t ≈ 0.52), gives a good range of µ.

Another remarkable observation is that µmin → 0 as ∆t → 0 , meaning
that only an infinitesimal proportion of the calculated force is required in
this limit.

Figure 2(c) shows that the damping ratio over the subcritical range (ζ <
1) weakly affects stability in comparison with A/m and ∆t, although perhaps
surprisingly, stability is reduced by increasing ζ. Typically motion damping
for ships in heave and pitch is in the range ζ = 0.15–0.25, sometimes artifi-
cially increased slightly beyond this with the use of ride control appendages.
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Figure 3: Error relative to stable solution at ω = ωn : (a) various A/m
(ζ = 0.2 , ωn∆t = 0.25); (b) various ∆t = 0.25 (ζ = 0.2 , A/m = 1.0);
(c) various ζ (ωn∆t = 0.25 , A/m = 1.0).

6 Influence of µ on accuracy

Errors arise from both the numerical integration scheme, equations (7)–(9),
and the stabilisation algorithm, equations (4) and (6). Errors presented
below are the total unless otherwise stated.

Figure 3(a) shows how error varies over the full range of stable µ values
for several A/m ratios. The discretisation components of these errors are
respectively −0.32% and 15.9◦ for amplitude and phase. Thus for higher
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values of µ the stabilisation errors are relatively small, and vanish for both
amplitude and phase in all cases at µ = m/(A + m) . The errors at the
extremities of each curve are similar, thus error is essentially a function of µ
relative to its limiting values for each problem, rather than to the absolute µ.
Apart from this indirect influence there is no evidence of any significant effect
of A/m on accuracy.

The time step size, as expected, profoundly affects accuracy (Figure 3(b)),
but the stabilisation error remains approximately in proportion to the dis-
cretisation error. For µ near its upper stability limit the stabilisation error is
negligible and at times even favourable, and the main concern for accuracy
is at the lower end of the µ range.

Figure 3(c) shows the effect of damping ratio on the stabilisation error.
Compared to the discretisation error (−0.70%, −0.32% and −0.15% in mag-
nitude and 17.5◦, 15.9◦ and 15.1◦ for phase for ζ = 0.1 , 0.2 and 0.4 respec-
tively) the influence of ζ on the stabilisation error is significantly stronger,
although qualitatively the same, with higher damping ratios being more
favourable.

The effect of frequency on the stabilisation error was also investigated.
At high frequency the error becomes greater mainly because the time step
size becomes large compared with the period of oscillation. However, the
stabilisation component of the error is less than the discretisation error in
the upper half of the stable µ range, and this holds for all frequencies.

Thus, in combination with the earlier observations, we conclude that it is
primarily the A/m ratio that determines the optimum µ for both accuracy
and stability.
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7 Conclusion

A procedure was presented for stabilising explicit time stepping in initial
value problems involving feedback in the highest derivative terms. The illus-
trative application was the unsteady motion of ships, in which the feedback
arises from the added mass of the water surrounding the hull. The method
involved elimination of the destabilising added mass effectively by estimat-
ing its value and moving it to the other side of the equation. In practice
this was achieved simply by blending the acceleration calculated from the
hydrodynamic force with an acceleration extrapolated from prior motions in
suitable proportions designated by a parameter µ. The instability present in
ship motion computations was simulated by the use of a simplified approx-
imation, both confirming the presumed origin of the problem and allowing
easy testing of the stabilising algorithm over a wide range of scenarios.

The method was extremely successful over the range of parameter space
into which normal ships could conceivably fall, providing both stability and
reasonable accuracy. A wide range of µ gave stable solutions, hence the
method is not dependent on accurate estimation of the added mass effect,
making it quite robust.

Errors are introduced both by the time discretisation (present also in any
stable problem) and by the stabilisation algorithm, and these two are gener-
ally similar. By choosing µ nearer the upper stability limit the stabilisation
errors were minimised and small in comparison to the discretisation errors,
while for lower values of µ the converse was true.

Although there may be significant coupling between the motions in the
various degrees of freedom (for example between heave and pitch) experience
shows that this does not translate into a coupling of the destabilising influ-
ences. There is only a very weak, if any, interaction between the stability of
each degree of freedom, and the optimum stability coefficient for each can
safely be determined independently, greatly simplifying the problem.
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