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Modeling Menaquinone 7 production in tray
type solid state fermenter
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Abstract

The fermented Japanese food Natto contains menaquinone 7 which
is known to reduce the incidence of bone fractures and cardio vas-
cular diseases. Natto is traditionally produced by the solid state
fermentation of soy beans by Bacillus subtilis natto. A mathematical
model is developed for describing the production of menaquinone 7
in a static solid substrate bed supported on a tray fermenter using
parameters obtained from literature for similar micro-organisms. Two
model parameters were fitted to experimental data obtained to predict
menaquinone 7 production. The postulated model presented in the
form of a sensitivity analysis is likely to yield valuable insights on the
dynamic behaviour of bacterial kinetics, including the formation of
products such as menaquinone 7 as the first step towards scaling up.
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1 Introduction

Menaquinone 7 (mk7) is part of the family known as vitamin K2, and is neces-
sary for the synthesis of blood coagulation factors, the activation of proteins
involved in the building of bones and inhibition of vascular calcification [1, 2].
Solid state fermentation (ssf) of mk7 in static bed reactors has only been the
subject of limited research [3, 4, 5, 6, 7, 25], where the relevant phenomena
are yet to be fully understood; hence mathematical models play an important
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role in fermenter design, optimization and potential scale up. This study pro-
poses a model for an overall performance of a bioreactor. This mathematical
model consists of transport phenomena and microbial kinetics to estimate
the effects of environmental conditions on mk7 production. Shallow trays
have a maximum bed thickness of 1 cm to avoid the O2 transfer resistance.
The set up used for collecting experimental data was designed in house and
the model predicted the effect of process parameters on the biomass growth
and production of mk7.

1.1 Model development

The model is a set of four balanced equations. The lumped parameter model
describes the production of mk7 via Bacillus subtilis in tray type fermenters.

1.1.1 Basic kinetic equations

Mathematical models of ssf bioreactors are commonly based on logistic
equations [8]. These equations rely on a simplification of mathematical
modeling by employing a single equation for estimating the whole growth
rate profile including the lag phase and cessation of growth in the last stage
of fermentation. This simplified differential equation,

dX

dt
= µX

(
1−

X

Xm

)
, (1)

eradicates the need for an additional equation for substrate measurement
and estimating the parameters of ssf [9]. Here, X is microbial biomass, t is
time, µ is the specific growth rate constant, and Xm is the maximum possible
microbial biomass.
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1.1.2 The effect of environmental conditions on growth

The two most important environmental variables that have significant im-
pact on bioreactor operation are temperature and the water activity for the
fermentation bed. The constant condition approach determines the effect of
these environmental variables in the model,

µT =
A exp

[
−Ea1

R(T+273)

]
1+ B exp

[
−Ea2

R(T+273)

] , (2)

where A and B are dimensionless, Ea1 and Ea2 fitting parameters, R is the
universal gas constant, T is temperature, and µT is the effect of temperature
on specific growth rate parameter. The assumption of an isothermal system
was used to develop the model for determining the effect of temperature. A
similar concept was also applied by von Meien and Mitchell [11] for predicting
the effect of water activity on bacterial growth which can be depicted as

µW

µopt

= exp
[
D1(a

3)ws +D2(a
2)ws +D3(a)ws +D4

]
, (3)

where D1 to D4 are fitting parameters, aws is water activity of the solid
substrate phase, µW is the effect of water activity on the specific growth
rate parameter, and µopt is the optimum specific growth rate parameter. In
subsequent equations we use the true specific growth rate µG [12], which is
the geometric mean of the temperature and water activity specific growth
rate parameters:

µG =
√
µWµT . (4)

To date, most models of ssf bioreactors used this approach to describe
the effect of environmental conditions on the parameters of the growth
equation [10, 12, 13, 14] although the form of the empirical equation that is
used varies. In any case, use of these equations within the kinetic submodel
of a bioreactor model has the implicit assumption that the growth of the
microorganism depends only on the current values of the environmental
variables.
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1.1.3 Death kinetics

In ssf bioreactors, the environmental conditions, especially the temperature,
can attain values that are sufficiently adverse to cause death [15]. The
modeling of death kinetics in ssf systems has received relatively little attention
due to a problematic definition of death via measuring it experimentally
through total and viable counts [15].

If death is simply defined as a permanent loss of the ability to grow, then
autolysis is not a necessary consequence of death. Therefore death will not
necessarily lead to a reduction in the amount of biomass, so it is not a simple
matter to quantify death experimentally. As a result, current models of death
used in ssf bioreactor models are very simple. For example, Sangsurasak and
Mitchell [16] assumed first order death kinetics and segregated the microbial
biomass into living and dead sub-populations:

dXV

dt
= µGXV

(
1−

XV + XD
Xm

− kDXV

)
, (5)

dXD

dt
= kDXV , (6)

where XV is viable cells, XD is dead cells, µG is true specific growth rate, and
kD is specific death rate coefficient.

It is not a simple matter to determine the true specific growth rate and the
first order death constant (kD) for use in these equations. We employed the
equation proposed by Szewczyk and Myszka [17] by fitting two Arrhenius-type
terms to a plot of observed specific growth rate versus temperature [15, 16],

µobs = µG − kD = µG − kD0
exp

(
−
EaD
RT

)
, (7)

where kD and kD0
are frequency factors, EaD is activation energy of death

kinetic, respectively; and µobs is used as µ in Equation (1).
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1.1.4 Product formation

mk7 production is assumed to be of the form,

rP =
dP

dt
= YPX

dX

dt
+mpX , (8)

where rP is overall rate of product formation, YPX is growth associated product
formation rate (fitted parameter), and mP is nongrowth associated product
formation rate (fitted parameter).

1.1.5 CO2 production and O2 consumption

The consumption of O2 and CO2 production are estimated by

dCO2

dT
= µ

(
X

YX/CO2

)
+mCO2

X , (9)

dO2

dT
= µ

(
X

YX/O2

)
−mO2

X , (10)

where YX/CO2
is the yield of CO2 from biomass, YX/O2

is the yield of biomass
from O2, and mO2

/mCO2
are maintenance coefficients. Equation (10) can be

used to indirectly measure the evolution of heat which affects the temperature
and hence the specific growth rate (µ) shown in Equation (2). Addition-
ally, O2 consumption and CO2 evolution are of particular interest in model
postulation, since they represent the most convenient way of estimating the
growth parameters in a bioreactor, and are the focus of upcoming experiments.
Equations were solved using Simulink ode15s.
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2 Materials and methods

2.1 Microoganism

Strain Bacillus subtilis var. natto was isolated from commercially available
natto after screening different types for highest mk7 producing strain as
described by Berenjian et al. [18].

2.2 Inoculum

Spores of Bacillus subtilis incubated on a liquid culture were suspended
in 0.9% NaCl solution to obtain the standard spore solution of 10.8 ±
0.04 log CFU gm−1). Solid state fermentation was carried out in square type
Petri dishes (100mm× 100mm× 15mm, Greiner, Germany) with a spore
loading of 8.4± 0.04 log CFU gm−1.

2.3 Medium

An equal mixture of corn and soy was autoclaved in the absence of wa-
ter at 121◦C for 20 minutes before inoculation. The water content after
inoculation was adjusted to 70%.

2.4 Substrate preparation and fermentation

Substrates used in this experiment were nixtamalized corn grits and soy
protein granules. These substrates were employed in a mixture of equal
corn and soy without any supplementation with other carbon and nitrogen
sources. The ssf procedure used has been described previously [6]. Briefly,
the initial moisture content was adjusted at 50% by addition of sterilized
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water to the autoclaved substrate that was kept in a fridge (4◦C) overnight
to allow complete swelling of the granules. Fermentation was carried out
at 37◦C inside an unaerated chamber (Thermoline Scientific, Australia) where
relative humidity was maintained at 90–95% to minimize water evaporation
from the substrate bed. The relative humidity, temperature and dew point
were measured throughout the incubation period using a data logger (Lascar
Electronics, UK). The production of mk7 was measured on days three, five
and seven during the fermentation. Individual sample trays were prepared
for each day to extract mk7 to minimize error in sampling and measurement.

2.5 MK7 extraction and determination

mk7 was extracted from 3 gm of homogenized wet substrate using 12mL
2-propanol: n-hexane (v:v 1:2) and determined using high performance liq-
uid chromatography (HP 1050, Hewlett-Packard, USA) using the method
described in detail previously [18]. The LC-MS system (LCMS-2010EV,
Shimadzu, Kyoto) was used to confirm the structure of mk7 [18].

2.6 Parameters and assumptions

The critical parameters for Bacillus subtilis do not exist in the literature.
Therefore, the parameters listed in Table 1 for other microorganisms were
used to estimate the constants for the equations for Bacillus subtilis fer-
mentation. Microbiological research relies on the use of model organisms
that act as representatives of their species or subspecies, these are frequently
well-characterized laboratory strains. However, it has often become apparent
that the model strain initially chosen may not represent important features
of the species [26].

• Heat evolution is assumed to be 460 kJ mol−1O2 (14.375 kJ gm−1O2) [21].

• Enthalpy of evaporation of H2O assumed to be 2MJ kg−1 of H2O [22].
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Table 1: Coefficient values and model microorganisms (where appropriate,
values have been converted from the units used by the cited source).

coeff. value* model strain Ref Eqn
A 2.694× 1011 h−1 Aspergillus niger [10] (2)
B1 3× 1047 Aspergillus niger [10] (2)
Aa1 70225 J mol−1 Aspergillus niger [10] (2)
Ea2 283356 J mol−1 Aspergillus niger [10] (2)
D1 618.92 Aspergillus niger [19] (3)
D2 −1863.53 Aspergillus niger [19] (3)
D3 1865.1 Aspergillus niger [19] (3)
D4 −620.67 Aspergillus niger [19] (3)
YX/CO2

0.76394 kg CO2 kg X−1 Rhizopus sp. [12] (9)
mc 0.031 kg CO2 kg X−1 h−1 Rhizopus sp. [12] (9)
YX/O2

0.9510 kg X kg O−1
2 Gibberella fujikori [20] (10)

mO2
0.013 kg O2 kg X−1 h−1 Gibberella fujikori [20] (10)

• Oxygen transfer resistance is negligible.

• Unlimited substrate availability (nitrogen and carbon sources).

• Temperature and water activity (aw) remain constant throughout culti-
vation.

• Model parameters remain constant throughout cultivation.

• Shikimate pathway for mk7 production was neglected.

3 Results and discussion

ssf modeling is challenging due to the heterogeneous nature of fermentation
and lack of available data for microorganisms of interest. Additionally possible
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Figure 1: Dependence of specific growth rate upon temperature.

deviations are expected since the dissimilarity of fitting parameters obtained by
different model microorganisms. The kinetic submodel is described including
the dependency on key environmental variables, because these variables
typically cannot be simply controlled at their optimum values in a ssf
bioreactor [8].

The effects of temperature and water activity on growth are described in
Figures 1 and 2, by expressing the parameters in the kinetic equation as
functions of the local conditions. These functions were calculated assuming
“isothermal” and “isohydric” conditions, which were maintained throughout
the growth cycle, whereas in real ssf processes the temperature and the water
activity change during the process. It is possible that expressions for the
effects of temperature and water activity that were obtained from isothermal
and isohydric assumptions cannot describe the true effect on growth of the
time varying conditions that are encountered by the organism in ssf processes
at large scales [23].

According to Equation (2) the effect of the specific growth rate parameter µ
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Figure 2: Dependence of specific growth rate upon water activity.

on temperature is described using the double-Arrhenius equation of Saucedo–
Castaneda et al. [10]. The symbol µT denotes that the equation describes
specifically the effect of temperature on the specific growth rate parameter.
The dependence of the specific growth rate parameter µW on water activity
was described by Equation (3) of von Meien and Mitchell [11], and the
geometric mean of the individual specific growth rates were calculated for
their combined effect in Equation (4).

The variation of mk7 production during the cultivation at 37◦C and aw of 0.95
is presented in Figure 3, in which the solid line represents the estimation
from the model by fitting the experimental data and adjusting growth associ-
ated product formation (YPX) and nongrowth associated product formation
rate (mP). There was a good agreement between experimental data and
results predicted by the model. The data in Figure 4 shows that by increasing
the temperature from 35◦C to 45◦C the yield of mk7 decreased by 40%. The
predicted value for mk7 production by the model was 140mg kg−1 within
the temperature range 35◦C to 37◦C, which is similar to value acquired
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Figure 3: Model estimation versus experimental values.

by Mahanama et al. [5, 6, 7] using experimental data and response surface
methodology.

The effect of water activity on the production of mk7 at 37◦C is shown
in Figure 5. The results of our study demonstrate that the high moisture
content is critical for the production of mk7 and its production ceased when
the moisture content dropped below 80%. This data shows that bacteria
growth in ssf is different from fungi that can grow even at lower moisture
content such as 50% humidity [24]. The low moisture level dries the culture
and decreases the growth rate, subsequently dropping the mk7 yield. The
production of mk7 was enhanced for all solid substrates with the initial
moisture level of 70% when using static fermentations [6]. According to
Lonsane et al. [25] only limited water is used in ssf, but water exhibits
profound effects on the physicochemical properties of solids, which in turn
affects process productivities. Different models were used to investigate the
effect of water activity and moisture on fermentation and mk7 production.
Our results shows the significant impact of water activity on mk7 production.
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Figure 4: The effect of temperature on mk7 production
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Figure 6: Predicted mk7 concentrations in reducing water activities

As shown in Figure 6, the mk7 recovery at the end of fermentation was
decreased with a reducing ramp that was associated with a faster moisture
evaporation rate. The model predicted the mk7 concentration of 150mg kg−1

at the lowest level of moisture content reduction (that is, −0.001). The
postulated mk7 concentration was dropped below 12mg kg−1 when the ramp
increased fivefold. At the end of the fermentation period the moisture contents
for ramps −0.001 and −0.005 were 83% and 16%, respectively. These results
are in good agreement with our previous data in which the sudden drop of
moisture content within the range of 10% to 20% dramatically decreased mk7
production to 80% [6].

4 Conclusions

The mathematical model developed in this study is based on parameters from
Gibberella fujikori, Aspergillus niger and Rhizopus sp. microoganisms. The
model could be matched to measurements, and qualitatively predict the effect
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on drying in mk7 production via a solid sate static bed fermenter. Water
activity had a significant impact on mk7 production; however, temperature
had a negligible effect within the range examined. The evaporation of water
from the substrate bed had an adverse effect on mk7 production due to the
drying and shrinkage of the bed. The proposed model has the potential to be
used for developing a tray type bioreactor with a thicker bed for the production
of mk7. Further research is required in a broader range to determine the
effects of process parameters on the growth rate of microorganisms and mk7
production.
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