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Abstract

The objective of measuring leaf photosynthesis using infrared gas
analysis is to determine key indicators of plant eco-physiology, includ-
ing light and CO2 compensation and saturation points, and critical
thresholds of temperature. These and other biochemical parameters in
photosynthesis models define specific response curves of photosynthetic
rate to environmental variables, such as light intensity, temperature,
and CO2. Since these parameters cannot regularly be measured in
the field, modellers normally adopt laboratory values as universal ones
even though the values of these parameters may vary across plant
species. This study investigates the identification of parameter values
from data sets obtained from field measurement.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5106

gives this article, c© Austral. Mathematical Soc. 2012. Published June 16, 2012. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5106


Contents C219

Contents

1 Introduction C219

2 The photosynthesis model C220

3 The parameter optimisation problem C223
3.1 First formulation . . . . . . . . . . . . . . . . . . . . . . . C224
3.2 Second formulation . . . . . . . . . . . . . . . . . . . . . . C224
3.3 Initial parameter estimates . . . . . . . . . . . . . . . . . . C226

4 Results C226

5 Directions for further work C229

A Constraint sets, parameter estimates and regression re-
sults C230

References C230

1 Introduction

The rate of photosynthesis is a key indicator of the effect the local environment
has on an individual plant. Predicting photosynthetic rates accurately may
provide insights into plant physiology by showing how the photosynthetic rate
responds to changes in environmental conditions. Farquar et al. [5] introduced
a seminal quantitative model of the photosynthesis rate that has been further
developed by others [1, 9, 4, 10, e.g.]. Gu et al. [7] discuss the difficulty of
calibrating these models to data obtained from field studies. This article
reports on an initial investigation of the parameter estimation problem using
nonlinear optimisation combined with a Monte Carlo method for estimating
confidence intervals for individual parameters.
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2 The photosynthesis model

The derivation of the photosynthesis model is based on two sub-models:

1. the stomatal model, describing the relation Ci = Ci(Cs,D) among
intercellular CO2 concentration (Ci), atmospheric CO2 concentration
at the leaf surface (Cs) and atmospheric vapour pressure deficit (D)
without water stress; and

2. the biochemical model, describing the relation Pn = Pn(I, T ,Ci) between
net photosynthetic rate (Pn), light intensity (I), air temperature (T),
and Ci.

The net rate of photosynthesis is assumed to be proportional to the difference
between atmospheric CO2 and intercellular CO2:

Pn = gs(Cs − Ci), (1)

where the proportionality coefficient gs is stomatal conductance. Following
previous work [5, 4], stomatal conductance was expressed as a function of
vapour pressure deficit, ambient CO2 concentration over leaf surface and net
photosynthetic rate:

gs = g0 +
APnf(D)

Cs − Γ∗(T)
, (2)

where f(D) = (1+D/D0)
−1, D0 is a parameter reflecting characteristics of

the response of stomata to atmospheric vapour pressure deficit, g0 is the
limiting value of stomatal conductance as Pn → 0 , A is an empirical slope
parameter and Γ∗ is the partial pressure of CO2 at compensation point. The
latter value is temperature dependent, according to the relation [4]

Γ∗(T) =
O

2τ(T)
, (3)

where O is the partial pressure of oxygen,

τ(T) = τ25 × τ(T−25)/10Q10 , (4)
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and where τ25 and τQ10 are empirical parameters describing relative amounts
of RuBP bound to the carboxylase and oxygenase reactions of the RuBisCO
enzyme.

According to Leuning [10], g0 > 0 and g0 = 0 corresponds to there being no
residual stomatal conductance. Following Yu et al. [12, 13], we assume that
g0 = 0 . Combining (1) and (2) then gives

Ci = Cs −
(Cs − Γ∗(T))(1+D/D0)

A
, (5)

allowing the calculation of intercellular CO2 concentration from observed
atmospheric CO2 concentration and vapour pressure deficit. Intercellular CO2

is one of the inputs required by the model of Farquhar et al. [5]. This is a
biochemical model of photosynthesis for C3 plants, in which photosynthesis is
expressed as a function of intercellular CO2 concentration, photosynthetical
photon flux density (that is, light intensity, denoted above by I), and tem-
perature. Farquar et al. [5] and Ball et al. [1] argued that an upper bound
on the gross photosynthetic rate, Pn + Rd , where Rd denotes the rate of dark
respiration, may be estimated by min{Je, Jc}, where

Je =
αAI(Ci − Γ∗)

Ci + 2Γ∗
and Jc =

Vm(Cs − Γ∗)

Cs + Kc(1+O/Ko)
. (6)

Here Je is the bound imposed on the photosynthetic rate by the production
of nadph enzymes and α is the quantum efficiency of nadph production;
Jc is the bound on photosynthetic rate imposed by carbon reactions. This
model has been adopted by many [6, 7], although Collatz et al. [4] extended
the bound to min{Je, Jc, Js}, where Js is the bound on the photosynthetic rate
imposed by sucrose synthesis. Gu et al. [7] discussed the limitations of this
extension. Collatz et al. [4] and Leuning [9, 10] revised the model of Farquhar
et al. [5] to simulate the coupling of photosynthesis and transpiration.

Following Farquhar et al. [5], in this article min{Je, Jc} is taken as an upper
bound on the photosynthetic rate Pn+Rd . In equation (6), Vm is the maximal
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rate of RuBisCo activity (defined below) and Kc and Ko are the Michaelis–
Menten parameters for CO2 and O2 respectively. Similarly to Γ∗, these are
assumed to be temperature dependent, according to

Kc(T) = Kc,25 × K(T−25)/10
c,Q10 and Ko(T) = Ko,25 × K(T−25)/10

o,Q10 , (7)

where Kc,25, Kc,Q10, Ko,25 and Ko,Q10 are empirical constants. The rate of dark
respiration Rd is also temperature dependent. Following Bjorkman et al. [2],
we assume

Rd(T) = Rd,25 × R(T−25)/10
d,Q10

(
1+ e1.3(T−55)

)−1
, (8)

where Rd,25 and Rd,Q10 are parameters to be determined empirically. This
model reflects a rapid decline in dark respiration at roughly 55◦C. Similarly,
Vm diminishes rapidly above a certain temperature, according to

Vm(T) = Vm,25 × V(T−25)/10
m,Q10

[
1+ exp

(
−a1 + b1(273+ T)

R(273+ T)

)]−1
, (9)

where Vm,25 and Vm,Q10 are parameters which describe RuBisCo capacity,
a1 and b1 are empirical constants, and R is the universal gas constant.

Again following Farquhar et al. [5], the actual net photosynthetic rate is then
estimated by the blend of the expressions for Je and Jc represented by the
smaller root of the equation

θ(Pn + Rd)
2 − (Je + Jc)(Pn + Rd) + JeJc = 0 , (10)

where 0 6 θ 6 1 , yielding

Pn =
(Je + Jc) −

√
(Je + Jc)2 − 4θJeJc
2θ

− Rd . (11)

Here, the case θ = 1 corresponds to Pn + Rd = min{Je, Jc}. Allowing θ 6 1

in effect asserts that Pn + Rd 6 min{Je, Jc} and allows for some co-limitation
between Je and Jc. In practice, Collatz et al. [4] reported that θ is typically
close to one.
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3 The parameter optimisation problem

Equations (3)–(11) are used to compute Pn once the embedded parameters
have been determined. Values of these parameters for a particular species
and local environment are determined by minimising the sum of squared
differences between the observed and predicted photosynthetic rates for known
input values for T , D, I and Cs, which we refer to in the following as variables.
Thus, the model parameters are the unknowns in the optimisation problem,
whereas values of the variables are known. Typically, the solution of this type
of constrained optimisation problem requires iterative numerical techniques
that rely on the provision of initial estimates for the values being sought.

In the remainder of this section we derive two formulations of the constrained
optimisation problem, in each case identifying constraints which the identified
parameter values must satisfy, and the objective function relating the predictor
variable Pn to a set of N observations of photosynthesis rate {P̂n,j : j =
1, . . . ,N}. The optimal estimates for the parameter values are those for which
the objective function, characterising the discrepancy between observed and
predicted photosynthesis rates, is minimised.

The minimisation problem was solved for three different settings (see Ap-
pendix A). The first setting is specified by constraint set A, which was
chosen to allow for the widest possible range of inputs in order to determine
parameters applicable to a wide range of environmental situations. The
second setting, specified by constraint set B, was chosen for the environmental
settings reported by Yu et al. [12, 13]. The third setting, constraint set C,
constrains parameters to ranges determined by the model of Farquhar et al. [5].
The final constraint of set C is based on the affinity of enzymes in response
to temperature. As temperature increases the affinity between RuBisCO
and CO2 falls, giving a larger Kc value. Since the rate of photorespiration
increases with temperature within the temperature range in which this model
is applicable, this results in the affinity between RuBisCO and O2 rising at a
rate faster than the affinity between RuBisCO and CO2. That is, Ko rises at
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a slower rate than Kc: simplifying the corresponding inequality

d

dT

(
Ko,25Ko,Q10

(T−25)/10
)
6
d

dT

(
Kc,25Kc,Q10

(T−25)/10
)
,

yields the final constraint in set C.

3.1 First formulation

The first objective function takes the least squares optimisation form

F1(β) =

N∑
j=1

[
Pn(xj;β) − P̂n,j

]2
, (12)

where xj = (I, T ,Cs,D) at the jth observation, β denotes the vector of
parameter values to be determined, Pn is given by (11) and P̂n,j is the observed
net photosynthetic rate at the jth observation. We seek that value of β which
minimises the value of the objective function.

Since Pn is given by (11), the objective function contains square roots which
potentially impose problems in optimisation. To ensure that the values of Pn
are real, the discriminant of the quadratic equation (10) must be non-negative
at each observation, prompting the additional constraints[

Je(xj;β) + Jc(xj;β)
]2

− 4θJe(xj;β)Jc(xj;β) > 0 , j = 1, . . . ,N . (13)

Even with the introduction of (13), optimisation of the objective function is
a difficult task. Thus in some instances, when the inbuilt function ‘FindMini-
mum’ was used, Mathematica [8] reported complex values for Pn.

3.2 Second formulation

Modifications were made to the objective function (12) in order to remedy the
problem identified above. In particular, we introduce intermediate variables Yj,
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j = 1, . . . ,N, which represent the predicted photosynthetic rate corresponding
to each observation. Replacing Pn by Yj in (11) and (12) yields

Yj + Rd =
(Je + Jc) −

√
(Je + Jc)2 − 4θJeJc
2θ

(14)

and a new objective function

F2(β) =

N∑
j=1

(Yj − P̂n,j)
2, (15)

where, in addition to the constraints mentioned in previous sections, the
values of Yj must be constrained to be the values of Pn, as defined in (11).
Replacing Pn in (10) (of which Pn + Rd is the smaller root given by (11))
by Yj, squaring and summing over all observations leads to the constraint

N∑
j=1

[
θ(Yj + Rd)

2 − (Yj + Rd)(Je + Jc) + JeJc
]2

6 ε , (16)

where ε is a suitably chosen small nonnegative number. The case ε = 0

corresponds to requiring that Yj = Pn(xj,β) for all j. In practice, if initially
an optimum cannot be found by the optimisation algorithm, the value of ε is
increased until the procedure is successful, although the difference between Yj
and Pn(xj,β) may grow yielding a greater least squares error.

Due to the squaring operation, used to obtain (16), an additional constraint
must be imposed to require that Yj + Rd corresponds to the smaller root
of (10). Specifically, since the smaller root satisfies

(Je + Jc) −
√

(Je + Jc)2 − 4θJeJc
2θ

6
(Je + Jc)

2θ
, (17)

we require Yj + Rd 6 (Je + Jc)/(2θ) for each predicted value, or[
Yj + Rd(xj,β) −

Je(xj,β) + Jc(xj,β)

2θ

]
6 0, j = 1, . . . ,N . (18)
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3.3 Initial parameter estimates

A set of initial parameter estimates is required for use in the iterative procedure
for solving the constrained optimisation problem. Table 3 (in Appendix A)
lists two sets of starting values used in the optimisation procedure. Initial
parameter estimates for constraint set A are based on those in Collatz et
al. [4], while those for constraint sets B and C were suggested by Q. Yu. The
estimates for several parameters in Collatz et al. [4] are based on experiments
conducted in vivo and these parameters may vary depending on the plant
species. In particular, the values of the parameters τ25, τQ10, Kc,25, Kc,Q10,
Ko,25, Ko,Q10, Rd,25, Rd,Q10, Vm,25 and Vm,Q10 in (4) and (7)–(9) were estimated
from biochemical studies on RuBisCO [11].

4 Results

Each of the formulations was tested using constraint sets A, B and C with the
same data set. This data set contained 1, 658 observations from measurements
of winter wheat photosynthesis activity conducted in a controlled leaf chamber
environment using a LI-6400 gas analyser [12, 13]. Note that Yu et al. [12]
calculated Pn using a model similar to that discussed in this article, with
parameter values from previous work and field measurements [4, 10].

Although point estimates of the parameters can be determined by regressing
against all available data, this yields no information about the precision
of the estimates. Instead, a bootstrapping approach, using subsets of the
available data, was used to derive point estimates for the parameters and
70% confidence intervals for these estimates, for each constraint set. In
particular, a set of N = 100 observations was drawn (with replacement) at
random from the available data. Regression was then applied to this sample
to determine an estimated parameter vector β̂. This procedure was repeated
Ns = 500 times yielding an empirical distribution of estimated parameter
vectors with mean β̄. The sample standard deviation σβ̂ and an estimated
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Table 1: Comparison of measured and predicted photosynthetic rates.
(Fk,S) Intercept Slope F1(β̄(k,S))

(F1,A) −0.57 1.09 6.51× 104
(F1,B) −5.7 1.06 1.53× 105
(F1,C) −5.0 0.0051 7.34× 105
(F2,A) 0.66 0.15 3.23× 105
(F2,B) 6.5 0.95 1.78× 105
(F2,C) 3.1 0.82 4.38× 104

70% confidence interval for β̄ were then computed following the procedure of
Buckland [3].

The photosynthesis model (3)–(11) with parameter vector β̄ was then used
to predict the full set of observed data, yielding a set {Pn(xj, β̄), P̂n,j)} of pairs
of observed and predicted rates. Simple linear regression was then applied to
this set: a desirable regression line has intercept and slope close to 0 and 1,
respectively.

Table 1 lists the intercept and slope of the regression line for each combina-
tion (Fk,S) of objective function Fk and constraint set S, and the value of
the first objective function F1(β̄(k,S)) where β̄(k,S) is the estimated parameter
vector for Fk and S. Four combinations appear to yield plausible models
although there was still substantial variation in the estimates of individual
parameters across these models. Figures 1–3 plot the observed rate versus
predicted rate for each observation, for each objective function and constraint
set using the parameter estimates β̄(k,S). The horizontal clumping evident
in some graphs is a feature that merits further investigation. Table 4 (in
Appendix A) details the confidence intervals corresponding to parameter
estimates for F2 under constraint set C, the combination yielding the least
value of F1. It is noteworthy that even for this model, there is a significant
variation in precision across the individual parameter estimates.
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Figure 1: Measured versus predicted photosynthetic rates (µmol m−2 s−1)
for constraint set A using parameters β̄ from (left to right) F1, F2.

Figure 2: Measured versus predicted photosynthetic rates (µmol m−2 s−1)
for constraint set B using parameters β̄ from (left to right) F1, F2.
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Figure 3: Measured versus predicted photosynthetic rates (µmol m−2 s−1)
for constraint set C using parameters β̄ from (left to right) F1, F2.

5 Directions for further work

The results of computational experiments suggest that the problem is very
sensitive to variations in the input variables’ values and initial estimates of
parameters. The nonlinearity of the model with possible multiple local minima
of the objective function also contributes to the difficulty of determination
of parameters’ values. This suggests that the model’s performance may be
improved when it is calibrated to data with relatively narrow ranges of variable
values, and its application restricted to correspondingly narrow ranges. For
example, we observed that the high values of F1, indicating poor performance
for (F1, C), are significantly improved by changing the initial estimate of b1.

Further work remains to be done to enhance the optimisation procedure and
to refine the selection of constraints and initial values on both practical and
theoretical grounds. Another area for attention is the method for choosing β̄—
in particular the treatment of outlier parameter vectors that may arise during
the bootstrapping procedure.



A Constraint sets, parameter estimates and regression results C230

A Constraint sets, parameter estimates and

regression results

The constraints of Table 2 in set A are chosen to allow for the widest possible
range of input variables in order to determine parameters applicable to
a wide range of environmental situations. Those in set B are formulated
specifically for the winter wheat species, with C0 defined as C0 = Kc(1+O/Ko).
Set C is based on theoretical limitations. The constraint on α is based on
nadph production, described in Collatz et al. [4]. The constraints in set C
on Vm,Q10 and Rd,Q10 ensure that Vm and Rd increase with temperature. The
constraint on τ ensures that the relative binding of RuBP to the carboxylase
and oxygenase reactions of RuBisCO at compensation point decreases with
temperature. Set C contains one final constraint not listed in Table 2, that is,
0 6 Ko,25

logKo,Q10

10
× Ko,Q10(T−25)/10 6 Kc,25 logKc,Q10

10
× Kc,Q10(T−25)/10.

Table 3 lists initial parameter estimates used in the optimisation.

Table 4 gives regression results for F2 under constraint set C.
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Table 3: Sets of initial parameter estimates used in the optimisation procedure.
The letter “c” preceding the value indicates that the value of the parameter O
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θ 0.95 0.9
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