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Instability dynamics of a horizontally shaken
pendulum
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Abstract

We consider the effect of horizontally shaking the pivot point of
a damped pendulum. While similar systems have been considered
in engineering in specific circumstances, for instance in the design of
isolation systems in an earthquake zone, a careful analysis of the shaken
damped pendulum behaviour has not been carried out. We identify the
periodic solutions in the system, examine their bifurcation behaviour,
and explore the development of chaos. We find that the horizontal
shaking supports bistability in a critical frequency range and that the
development of chaos depends sensitively on the driving frequency.
Our work complements recent experiments on coupled pendulums with
horizontal shaking, providing a foundation for further study of the
pendulum dynamics.
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1 Introduction

The damped-driven pendulum is a familiar object; the old-fashioned pen-
dulum clock is a well-known example. However, it appears in a wide range
of applications, from the operation of a crane [1] to an artificial heart [2].
Damped-driven pendulum models also form the basis of many theoretical in-
vestigations seeking to understand complex behaviour, from physical problems
such as the nature of friction [3], to more general problems such as conditions
for the emergence of chaos [4]. Pendulum-type models are widely used because
they often capture the key dynamics of more complicated dynamical systems;
however, often the details of the type of driving (and damping) vary between
systems, and these differences have important effects.

The most well-known form of driving is that of an external oscillating force
(for instance through a rotation of the pivot point of the pendulum), and
chaotic motion is well known to appear in such a system [5, 6, e.g.]. Another
commonly encountered driving force is that due to parametric driving, so
named because a parameter of the system is varied with time (such as the
length of the pendulum). Effective parametric driving through the vertical
shaking of the pendulum pivot point has long been known [4, e.g.]. We
instead consider the effect of horizontal shaking on the pendulum. Such
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driving is of particular interest from a theoretical perspective due to its
possible decomposition in the limit of small pendulum oscillations into both
a parametric component and an external driving force. Horizontal shaking
has been recently examined in experiments on many pendulums [7], yet the
underlying behaviour for a single pendulum is still largely unknown. However,
related forms of such driving appear widely in engineering, for instance in
pendulum isolation systems for response to seismic activity [8], but such
driving has seen relatively little study from a nonlinear dynamics perspective.
One notable exception is the finding that horizontal shaking may lead to the
oscillation of the pendulum about a non-zero mean angle [9]. We examine
in detail the bifurcation behaviour of the horizontally shaken pendulum and
uncover the existence of bistability, intermittency and full chaotic dynamics.

2 Model

A schematic of the physical pendulum system we consider is shown in Figure 1
as adapted from the experimental setup considered by Thakur, English and
Sievers [7] for a system of coupled pendulums. A rod of mass m and length L
ending in a weight of mass M is fixed on a torsional spring and suspended
by a taut piano wire which is fastened on a frame. An electric motor is then
used to drive the frame horizontally, so realizing the horizontal shaking of
the pendulum. The equation of motion for the angle θ from vertical of the
pendulum mass is, in dimensionless form,

θ̈+ aθ̇+ sin(θ) + fω2 cos(ωt) cos(θ) = 0 , (1)

where a is the dimensionless damping coefficient, f is the shaking amplitude
ω = ωd/ω0 is the ratio of the shaking frequencyωd and the natural pendulum
frequency ω0, and t is in units of ω−1

0 (Thakur et al. [7] gave further details
of the model). The effective torque on the pendulum mass depends on the
angle θ, leading to an effective parametric driving in the system.
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Figure 1: Sketch of model system. A mass M at the end of a rod of length L
and mass m, displaced an angle θ from the vertical and subjected to a
horizontal driving force, exerted on the pendulum pivot.

3 System analysis

Our results are displayed using three main diagrammatic forms.

1. Trajectory plots: displaying the trajectory of a state variable such as
the angle θ with time t.

2. Poincare sections: sampling the angle θ and angular velocity θ̇ at the
driving frequency and plotting these values as points on a 2D graph.

3. Bifurcation diagrams: displaying the θ values only from the Poincare
section, versus the changing control parameter f (amplitude of driving).
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We begin our analysis by looking for harmonic solutions of the pendulum
motion in the form θ = Vc cos(ωt + φ), where Vc is the amplitude of the
pendulum oscillation and φ is the phase offset from the driving phase ωt.
We make two assumptions which simplify the problem. Firstly, we use Taylor
series to replace the trigonometric nonlinearities with their lowest order
algebraic nonlinear expansions; that is, sin θ ≈ θ−θ3/6 and cos θ ≈ 1−θ2/2 .
Then we obtain the approximate model equation

θ̈+ aθ̇+

(
θ−

1

6
θ3
)
+ fω2 cos(ωt)

(
1−

1

2
θ2
)

= 0 . (2)

Secondly, we use the rotating wave approximation to neglect all third harmonic
terms; that is, we assume cos3(ωt+ φ) 7→ 3 cos(ωt+ φ)/4 . Making use of
this second assumption we multiply Equation (2) by cos(ωt) and integrate
over one driving period [0, 2π/ω] to remove the dependence on t. This gives
the following equation relating Vc and φ:

8Vcaω sinφ+ 2ω2fV2c cos2φ+ 8Vcω
2 cosφ+ V3c cosφ

− 8Vc cosφ− 8fω2 + fω2V2c = 0 . (3)

Similarly multiplying Equation (2) by sin(ωt) and performing the integration
gives a second equation relating Vc and φ:

Vc
(
−8 sinφ+ 8ω2 sinφ+ V2c sinφ+ 2ω2fVc sinφ cosφ− 8aω cosφ

)
= 0 .

(4)

Setting ω = 0.8 , a = 0.1 and f = 1.1 we solve Equations (3) and (4) to obtain
three real solutions for (Vc,φ): (1.463, 2.913), (1.662, 0.293) and (2.080, 2.602).
In the case of large Vc the small θ approximation behind Equation (2) breaks
down and we expect that our solutions will not be in good agreement with
those of the original system (1). We compare the approximate solutions
with those of the full model by numerically integrating the full system (1).
With initial conditions x(0) = 0.5 and y(0) = 0.1 we obtain Vc = 0.8573 and
φ = 5.0 (see Figure 3), while for initial conditions x(0) = 1.0 and y(0) = 0.5
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we converge to a solution with Vc = 2.07 and φ = 1.0 . We see that, as ex-
pected, there is only approximate agreement between the two sets of solutions.
Significantly we find only two solutions through the numerical integration,
and so we conclude that of the three solutions to (2) two are stable and one
is unstable.

We examine the dependence of this bistability on ω in Figures 2–4. We see
that the bistability only exists for a range of ω (from approximately ω = 0.6
to ω = 0.8). Interestingly, we see that while the low amplitude solution is
essentially out of phase with the shaking, the high amplitude solution is nearly
in phase (see Figures 3 and 4 respectively: blue lines, θ(t); red lines, cos(ωt)
shaking). Comparing the analytical and numerical solutions over this range
of ω we see reasonable agreement (see Figure 2), despite Vc being large. The
red stars are the solutions for the initial condition x(0) = 0.5 and y(0) = 0.1 ,
and the green stars are the solutions for the initial condition x(0) = −0.5 and
y(0) = −2.0 .

We find that the system is sensitive to the initial conditions in the region of
bistability. To expose this sensitivity we examine the basins of attraction for
the two stable solutions in the range of initial conditions θ(0) ∈ [−π,π] and
θ ′(0) ∈ [−2, 2]. The results are shown in Figure 5. The convergence to one or
the other solution shows complex fine structure in the basins of attraction. But
in general we see convergence predominantly to the low amplitude solution
for low initial angles and predominantly to the high amplitude solution for
large positive initial angles.

We now turn our attention to the behaviour of the pendulum as the forcing
amplitude is varied. We examine the bifurcation behaviour of the pendulum
dynamics in the range in which there are three solutions. Taking ω = 0.7 ,
we find that for the given initial conditions (θ(0) = 0.5 and θ ′(0) = 0.1)
the pendulum converges to one periodic solution as the forcing amplitude f
is varied up to f ≈ 5 , as shown in Figure 6(a). For f > 5 the pendulum
exhibits complex windows of chaotic motion and periodicity. Increasing the
frequency to ω = 0.8 , we obtain the more complex bifurcation behaviour
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Figure 2: Comparison between solutions of the approximate model (2) and
numerical solutions of the full model (1): the small blue dots are the solutions
to (2); the blue circles and red stars are two sets of numerical solutions to
system (1) (found under different initial conditions: blue, initial conditions
x(0) = 0.5 and y(0) = 0.1 ; red, initial conditions x(0) = −1.5 and y(0) =
−2.0).

at small values of f, as shown in Figure 6(b). For f < 1.2 two periodic
solutions are possible, and the bifurcation plot of Figure 6(b) shows jumps
between two values as a consequence of this. At f = 1.2 chaotic behaviour
begins to appear (noticeable by the stream of vertical points appearing in the
bifurcation diagram) before the dynamics settle down to periodic behaviour
(Figure 7). The intervals of chaos become steadily longer until at f = 1.45 no
periodic behaviour is seen (Figure 8(a)). The solution becomes regular again
for f > 1.6 over a large parameter window (Figure 6(b)). In this region the
dynamics correspond to the periodic oscillation of the pendulum.

The chaotic motion is visualised using the Poincare map. We plot the values
of θ and θ ′ every 2π/ω timestep as points on the graph. When the dynamics
are chaotic the points trace out the chaotic attractor shown in Figure 8(b).
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Figure 3: Trajectory for initial condition x(0) = 0.5 and y(0) = 0.1 when
ω = 0.7 , a = 0.1 and f = 1.1 .

Figure 4: Trajectory for the initial condition x(0) = −0.5 and y(0) = −2.0
when ω = 0.7 , a = 0.1 and f = 1.1 .
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Figure 5: The basins of attraction for the two different periodic solutions at
a = 0.1 , f = 1.1 and ω = 0.7 . Blue and red correspond to small and large
amplitude solutions respectively.

This attractor appears even when the chaotic motion eventually settles to
a periodic state, due to the initial chaotic transient. We made use of the
periodicity of θ and mapped all values of θ into the domain θ ∈ [0, 2π].

Lastly, we examine the dynamics after the first chaotic interval in the bifurca-
tion diagram. Figure 9 shows an example periodic trajectory (when a = 0.1 ,
ω = 0.8 and f = 1.8), suggesting that the dynamics become regular for larger
driving amplitude. However, we find that for some initial conditions and
parameter values the pendulum may instead converge to a steadily rotating
state. These results indicate that the full picture of the dynamics of the
damped-driven pendulum is highly complex, hinting at further bifurcations
which are beyond the scope of this present work. Such complexity is expected
given that the more well studied torque-driven pendulum exhibits similarly
complex bifurcation behaviour.
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(a)

(b)

Figure 6: (a) The bifurcation diagram for a = 0.1 , f = 1.1 and ω = 0.7 .
(b) The bifurcation diagram for a = 0.1 , f = 1.1 and ω = 0.8 . In both cases
the initial conditions used are θ(0) = 0.5 and θ ′(0) = 0.1 . The diagram is
constructed by plotting the θ values every t = 2π/ω timestep after an initial
period of t = 1000 to remove initial transient behaviour.
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Figure 7: A trajectory demonstrating the intermittent route to chaos (a = 0.1 ,
ω = 0.8 and f = 1.2).

4 Conclusion

Our work uncovers some of the complex behaviour found in a horizontally
shaken pendulum. We find that the horizontal shaking supports bistability
in a critical frequency range, with the two possible periodic solutions cor-
responding to low and high amplitude oscillations which are out-of-phase
and approximately in-phase with the shaking, respectively. We find that the
system exhibits an interesting form of intermittency on the route to chaotic
behaviour, displaying increasingly longer periods of chaotic behaviour before
settling into periodic motion. The development of this chaotic behaviour
depends critically on the ratio of the driving and natural frequencies of the
pendulum, where we have examined the case in which the driving frequency is
lower than the natural frequency. For larger shaking amplitudes the pendulum
returns to periodic behaviour; however, it may also exhibit rotations for cer-
tain initial conditions and parameter values, hinting at the further complexity
of this driven system. Our work opens up the possibility of further study on
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(a)

(b)

Figure 8: (a) A trajectory showing fully developed chaos (a = 0.1, ω = 0.8
and f = 1.45). (b) The Poincare section of developed chaos when a = 0.1 ,
ω = 0.8 and f = 1.45 .
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(a)

(b)

Figure 9: (a) An example trajectory from beyond the chaotic region in
parameter space, at a = 0.1 , ω = 0.8 and f = 1.8 . (b) A magnification of
the stable evolution.
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this system and our future work will be extended to the theoretical analysis
of the more complex instabilities which have been observed in experiments
on shaken pendulum chains [7].
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