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Modelling power output from correlated wind
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Abstract

Wind data from fifteen potential wind farm sites covering New
Zealand were analysed. The data was fitted with a generalised gamma
distribution and transformed to a Gaussian distribution. A regression
was used to model the temporal correlation and the spatial correlation
was modelled with a multivariate Gaussian distribution. This enabled
prediction of the distribution of power generated and of the changes in
power over ten minute intervals. For predicting up to two hours ahead,
prediction of wind speed was moderate, but the steep relation of wind
to power meant that power predictions were not good.
Subject class: 62P30
Keywords: Wind prediction, Multiple wind farms

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5194
gives this article, c© Austral. Mathematical Soc. 2013. Published November 28, 2013, as
part of the Proceedings of the 2011 Mathematics and Statistics in Industry Study Group.
issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be
made otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5194


Contents M105

Contents
1 Introduction M105

2 A probabilistic model of wind data M106

3 Simulation of power generation probabilities M117

4 Prediction using simulation M118

5 Prediction by data-matching M120

6 Prediction using a local model M127

7 Prediction using power M127

8 Additional effects M132

9 Conclusions M137

A Notation M139

1 Introduction

The misg project sponsor Transpower is the owner of the New Zealand
national electric power grid that delivers power from the power stations to the
local suppliers of electricity to the end users. Transpower is also responsible
for balancing the demands of power users with the supply of electricity.

Wind power, although available day and night, is variable and is thus a source
of imbalance on the power network. An understanding of the nature of its
variation is needed, particularly as more wind farms are added to the network.

One problem of interest is to predict wind velocity and hence power from
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a given site. A second issue, and the primary focus of this report, is the
combined effect of multiple generating sites. Transpower is interested in the
size of changes in power that need to be accommodated by the electricity
grid. As more wind farms are added to the grid the variation, measured in
megawatts, in power generation will increase, but due to averaging effects the
variation expressed as a proportion of total wind power will decrease.

This report examines the ability to predict the wind velocity and the power
produced. A large set of wind speed data was provided for examination by
this misg project (Electricity Authority, 2011). The data is synthetic in
the sense that it was generated for potential wind farm sites from numerical
weather forecasts that had been matched to actual measurements where
these were available. The use of synthetic data was necessitated by the
fact measurements are not generally available from the wind farm sites and
particularly not at the height of typical wind turbines, which is 80m at the
hub. The data consisted of wind speeds at ten minute intervals for 15 sites
located around New Zealand, and extended over five years.

Section 2 outlines a method for simulating the distribution of wind data.
Section 3 carries this simulation on to power generation. Sections 4, 5
and 6 examine how well the simulated data can predict a real data sequence.
Section 7 considers modelling the power distribution based on previous power
data without the use of wind data. Section 8 considers some additional effects
that could improve the regression models.

2 A probabilistic model of wind data

This section demonstrates a simulation of the wind speed velocities at the
various wind farm sites. Predictions of both the systematic wind behaviour
and the random component within the wind are included in the simulation.
The simulation can be used to make predictions of future wind speeds, and
uses Monte Carlo methods to give accuracy estimates for the short term
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predictions and to give insight into longer term statistical distributions. This
work extends ideas presented by Zakaria et al. (2010) for combining rainfall
data from two sites.

An examination of the data showed that, if we ignore temporal correlation,
a reasonable fit to the wind speed distribution at each site is obtained with
a generalised gamma distribution (Wikipedea, 2011; Stacy, 1962). This
was implemented as a gamma distribution fitted to the 2.5 power of the
wind velocity. Table 1 gives the shape and scale parameters for the gamma
distribution, Figure 1 shows these fits for the fifteen wind farm sites and
Figure 2 shows the difference in probability density between the data and the
predicted distribution. There are noticeable differences at low velocities, but
for power generation these are not important as no power is generated for
winds below about 5ms−1. At higher velocities the fit appears to be good.

To model time dependence the data is simulated using a random walk and for
this a scale more closely related to a Gaussian (Normal) distribution is used.
The 2004 misg (Whiten and Tsoularis, 2004) demonstrated the generation of
a data sequence with very similar frequency distribution to the wind data,
using a simple correlated sequence generator.

Using the generalised gamma distribution the data xi,j is transformed to a
probability scale ui,j (0 to 1) which will be approximately uniform. This is
then transformed to Gaussian distributed values yi,j for further analysis. In
symbolic form this is (see notation Appendix A for symbol definitions)

uij = Γ(x
2.5
ij ,αj,βj), (1)

yij = Φ
−1(uij). (2)

This Gaussian data is then suitable for the simulation as it is no longer re-
stricted in range, and correlated Gaussian distributions are readily simulated.

As correlations between the Gaussian values (and also the original wind
velocities) are positive or close to zero; nonnegative regression, resulting in
only positive coefficients, is used to predict the ten minute Gaussian values
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Figure 1: Fit to experimental data to power of 2.5 using gamma distributions
(horizontal axis wind speed ms−1, vertical axis probability).
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Figure 2: Probability difference (vertical axis) data (probability minus fitted
probability), versus wind speed ms−1.



2 A probabilistic model of wind data M110

Table 1: Parameters α shape and β scale for the gamma distributions for
wind speed to the power 2.5, fitted to the fifteen wind farm sites (sites range
over the length of New Zealand, see Electricity Authority (2011) for details).
The last column gives regression coefficients âj from equation (3) for previous
ten minute value.

Code α(shape) β(scale) âj(3)
sth1 0.476 1215.9 0.904
sth2 0.708 608.7 0.915
sth3 0.589 1184.5 0.953
cty1 0.602 508.3 0.959
cks1 0.779 471.2 0.963
cks2 0.758 770.4 0.883
cks3 1.085 533.2 0.889
mwt1 0.682 792.1 0.862
mwt2 0.632 760.1 0.825
mwt3 0.895 437.6 0.893
cni1 0.639 618.0 0.937
cni2 0.764 402.0 0.922
nth1 0.778 383.7 0.897
nth2 0.933 290.8 0.843
nth3 0.674 479.5 0.971

from previous values. For all sites the major term in the prediction is the
previous ten minute value from the same site, with a typical coefficient of
about 0.9. It was found, by some trial and error, that including in the
regression, from the fifteen sites, the sum of the Gaussian values from three
to five 10 minute intervals before the value being predicted was needed for
a satisfactory result. The values two 10 minute intervals before were found
not to improve predictions. That is, for each site j = 1, . . . , 15, and time i we
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have the regression model

yi,j = âjyi−1,j +

15∑
k=1

b̂j,k(yi−3,k + yi−4,k + yi−5,k) + εi,j , (3)

where the coefficients âj and b̂j,k minimise
∑

i,j ε
2
i,j. For nearby wind farms

it is tempting to interpret these extra predictors yi−3,k + yi−4,k + yi−4,k as
representing the delay in wind travelling from one site to the next. However,
in some cases the winds are also associated with distant sites, where it would
take far more than half an hour for a wind gust to travel between them,
even if the wind was blowing in the right direction. So perhaps these extra
predictors are better interpreted as representing the passage (or absence)
of widespread weather systems across the country. The inclusion of these
additional predictors from the fifteen sites made only a modest reduction of
between 2% and 0.3% for the root mean squared error in the regression, but
made the distributions of the predicted wind speed and changes in wind speed
much closer to the distributions given by the data. The exact reasons for
this is a subject that needs further investigation. Table 1 gives the regression
coefficients for prediction from the previous ten minute interval, and Table 2
gives the coefficients of the sum of the third to fifth lagged ten minute intervals.

Given the coefficient estimates from the autoregression equation (3), residuals
are calculated as

ei,j = yi,j −

[
âjyi−1,j +

15∑
k=1

b̂j,k(yi−3,k + yi−4,k + yi−5,k)

]
. (4)

The residuals are compared to Gaussian quantiles in Figure 3. The plotted
points are linear over the central three or four probits each side of zero, which
means the tails are less than 0.1% of the data. Plotting the residuals against
the wind speed, Figure 4 shows these tails occur at the very low wind speeds.
The transformation from wind speed to Gaussian distribution considerably
expands the low part of the scale, resulting in the larger residuals due to
a lack of resolution. These values have been left in the data used for this
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Figure 3: Gaussian (Normal) probability plots of residuals ms−1, horizontal
axis is residual ms−1 and vertical axis is probits.
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Figure 4: Residuals vertical axis ms−1, versus wind speed horizontal axis ms−1.
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Table 2: Regression coefficient matrix bj,k of row vector yi−2,k+yi−3,k+yi−4,k
times 100000. Each column gives coefficients for one wind site. The order of
sites is the same as Table 1.

2369 124 200 58 0 0 0 0 0 0 0 0 0 0 0

251 1755 544 0 0 0 28 0 4 25 0 82 9 0 9

333 544 116 218 0 0 0 0 0 180 0 0 0 4 15

219 0 359 0 43 63 203 0 53 99 66 48 72 0 0

106 0 115 119 0 141 266 55 0 172 0 0 8 10 0

74 0 0 250 173 2851 361 0 0 0 109 0 103 0 0

119 0 0 286 512 678 1937 0 0 0 75 206 0 0 0

119 0 137 28 163 100 0 3058 482 424 122 92 0 0 0

71 37 0 113 77 0 143 340 4717 15 92 232 0 14 15

0 0 248 0 188 82 133 241 35 1986 263 190 62 73 92

0 0 0 46 22 135 137 0 67 186 1205 67 0 110 106

0 196 6 20 0 0 61 36 241 216 187 1444 79 66 83

0 119 0 94 84 0 0 0 0 115 0 70 2450 295 170

2 0 1 0 32 0 74 0 0 77 130 14 241 4165 409

0 0 0 0 0 0 0 0 0 3 91 22 93 420 0

demonstration of the simulation method. It is expected that their removal
would not have a large effect.

The residuals eij form the basis for stochastic simulation of the data. Using eij
directly generates the original data. The fifteen residuals for each ten minute
time interval are correlated (Table 3) so this correlation needs to be simulated.
There are several possible ways this can be done:

M1. The time sequence of the calculated ten minute residuals can be ran-
domised to produce a new sequence;

M2. The residuals can be replaced by Gaussian samples generated with the
covariance seen in the residuals cov(eij);
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Table 3: Covariance matrix for residuals times 10000. The order of sites is
the same as Table 1.

406 21 21 15 22 −3 24 10 0 −58 −14 −24 −48 8 −50
21 400 33 12 11 −23 12 −18 9 32 −15 30 25 −4 −19
21 33 371 27 22 −42 −90 29 −2 40 −9 12 5 19 −22
15 12 27 358 27 23 42 19 16 30 20 20 22 −14 −21
22 11 22 27 535 26 45 40 15 40 12 −60 26 27 −18
−3 −23 −42 23 26 327 78 14 −15 11 20 −46 4 −9 −24
24 12 −90 42 45 78 644 −38 14 25 28 31 −118 25 −53
10 −18 29 19 40 14 −38 386 35 48 17 20 −9 8 −17
0 9 −2 16 15 −15 14 35 330 21 14 18 −4 5 −6

−58 32 40 30 40 11 25 48 21 509 30 29 22 26 3

−14 −15 −9 20 12 20 28 17 14 30 279 15 −14 18 3

−24 30 12 20 −60 −46 31 20 18 29 15 348 16 13 −1
−48 25 5 22 26 4 −118 −9 −4 22 −14 16 388 12 0

8 −4 19 −14 27 −9 25 8 5 26 18 13 12 399 9

−50 −19 −22 −21 −18 −24 −53 −17 −6 3 3 −1 0 9 275

M3. The residuals can be replaced by Gaussian samples generated with a
covariance calculated to give the observed covariance of the Gaussian
transformed wind speeds. This covariance is

cov(yi,j) − cov

[
âjyi−1,j +

15∑
k=1

b̂j,k(yi−3,k + yi−4,k + yi−5,k)

]
. (5)

With the regression equations generated as above all three methods give
very similar results for the chosen predictor variables. For other choices of
the predictors the three methods gave differing results. In most cases the
third method is preferred as it ensures the simulated Gaussian values have
a correlation matrix that agrees with the experimental value. With limited
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data the difference in method M3 may not be positive definite and in that
case the method can not be used.

So the steps in a Monte Carlo regeneration of wind speeds are the following.

0. Initially five previous wind speed readings at ten minute intervals for the
fifteen sites are needed to start the simulation. These are transformed to
the Gaussian values. Alternatively the simulation could be started from
zero or random values on the Gaussian scale, and the initial simulated
values neglected. Call these initial values

y∗1,j, y
∗
2,j, y

∗
3,j, y

∗
4,j and y

∗
5,j , (6)

so that the first values to be simulated will be y∗6,j and x∗6,j;

1. Simulate new error values using one of the three methods M1, M2 or
M3, giving

ε∗ij ; (7)

2. Use the regression equations to predict the Gaussian values for the next
ten minute interval and add the generated residual values, to get the
simulated Gaussian values

y∗i,j = âjy
∗
i−1,j +

15∑
k=1

b̂i,k(y
∗
i−3,k + y

∗
i−4,k + y

∗
i−5,k) + ε

∗
i,j ; (8)

3. Convert the simulated Gaussian values from step 2 to a uniform distri-
bution

u∗
i,j = Φ(y∗i,j) ; (9)

4. Convert the uniform distribution using the generalised gamma distribu-
tion, back to wind speeds

x∗i,j = Γ
−1(u∗

i,j,αj,βj)
1/2.5. (10)

Steps 1 to 4 are repeated to produce the required number of time steps.
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3 Simulation of power generation probabilities

We are interested in the effect of the correlated winds on the total power
generated, so the wind speeds must be converted to power and summed over
all the generating sites. For this demonstration the wind speed-power relation
for a single turbine is assumed to be cubic until 12ms−1 and then constant
from 12ms−1 until 25ms−1 when it drops to zero. Furthermore the wind farm
has been assumed to have a linear wind variation between turbines across the
farm of 5ms−1 giving the conversion curve for the total wind farm in Figure 5.
We assumed that all fifteen sites have the same maximum power generation.
The results have been normalised to show the fraction of maximum possible
power.

Figure 6 shows the cumulative distribution of power from the original wind
data and ten simulations that indicate the extent of variation that can
be expected, for example at the median power (50% on probability scale)
the power output is estimated as being between about 46% to 52% of the
maximum. Figure 7 expands the ends of the probability scale, and adds
curves for a single wind farm and four wind farms. As more wind farms are
added the distribution becomes flatter, corresponding to less extreme relative
variation. However, as the power from multiple wind farms is greater, the
actual variation in power is greater.

The power network operators are also interested in how fast changes in power
generation can occur. Figure 8 shows the distribution of changes in power
generation between one ten minute interval and the next, again for the fifteen
sites with equal maximum generating capacity. The vertical scale is change
in power as a fraction of total generating capacity. The graph suggests
that around 95% of the time the relative power change is within ±5%, but
occasionally changes of between 10% and 15% will occur, even though the time
between measurements is only ten minutes. Figure 9 expands the ends of the
probability scale, and adds the relative changes for one and four wind farms.
Again the relative changes decrease with more wind farms, but actual changes
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Figure 5: Relation between wind speed ms−1 and total power generated for
the wind farm. Power scale is normalised by the maximum power possible.

will increase. The Monte Carlo method appears to slightly overestimate
the magnitude of relative power change in the mid-tails of the distribution
(0.001 < probability < 0.1 and 0.9 < probability < 0.999). The reasons for
this have not been investigated.

4 Prediction using simulation

The simulation was used to produce predictions over a short time interval
given initial values of wind speed over the previous four, 10 minute intervals.
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Figure 6: Cumulative distribution of relative power output; sum of fifteen
equal sites with maximum output normalised to one. Solid red line is from
the wind data and the blue dashed lines are ten Monte Carlo repeats.

Figure 10 shows ten simulations for each of the fifteen sites over the first
120 minutes of prediction. As might be expected the variation predicted by
the simulations progressively increases as the time increases and in most cases
showed a significant amount of variation after 120 minutes.

Figure 11 shows the wind speeds from Figure 10 converted to power generation
expressed relative to the maximum power output. In this example many of
the sites are operating at wind speeds that correspond to steep parts of the
speed to power graph of Figure 5. The result is a large amount of scatter in
the power, and the prediction rapidly becomes useless.
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Figure 7: Cumulative distribution of power output; for one, four, and fifteen
equal sites with maximum output normalised to one and an expanded proba-
bility scale. Lower slopes correspond to more wind farm sites. Solid red lines
from the wind data and the blue dashed lines are ten Monte Carlo repeats.

5 Prediction by data-matching

The data available is plentiful so it could be expected that weather conditions
in the file could be matched with the current wind values, and the previous
behaviour used to predict the future behaviour from the current conditions.
The current wind values used for testing are the same as the initial conditions
used in the previous section and four years of data from the file of ten minute
values was used as the historical record.
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Figure 8: Cumulative distribution of changes in power output relative to the
maximum power, in ten minutes; fifteen equal sites with maximum output
normalised to one. Solid red line is from the wind data and the blue dashed
lines are ten Monte Carlo repeats.
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Figure 9: Cumulative distribution of changes in power output relative to
the maximum power, in ten minutes; one, four, and fifteen equal sites with
maximum output normalised to one and an expanded probability scale. More
wind farms sites give a lower slope. Solid red line is from the wind data and
the blue dashed lines are ten Monte Carlo repeats.
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Figure 10: Simulation of wind (vertical scale ms−1) over 120 minutes (hori-
zontal scale) from a given initial position. Dotted blue lines are simulations,
and solid red is actual data.
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Figure 11: Simulation of power relative to maximum, over 120 minutes (hori-
zontal scale) from a given initial position. Dotted blue lines are simulations,
and solid red is actual data.
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Figure 12: Prediction of wind (vertical scale ms−1), using similar cases from
data, over 120 minutes from a given initial position. Dotted blue lines are
simulations, and solid red is actual data.
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Figure 13: Prediction of power relative to maximum power, using similar
cases from data, over 120 minutes from a given initial position. Dotted blue
lines are simulations, and solid red is actual data.
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The root mean square error was calculated between the current ten minute
values for the fifteen sites, and the ten minute values for the fifteen sites in the
four years of data. The ten smallest root mean square values (1.80 to 2.15)
were located and the wind for the next two hours following the match point
scaled so that the first values matched the current wind values.

Figure 12 shows the predictions obtained for the wind and Figure 13 shows
the relative power predictions. Comparing these with Figures 10 and 11 it
is seen that the variation is perhaps slightly smaller than for the simulated
data, but overall the results are basically similar and the power prediction
rapidly becomes useless.

6 Prediction using a local model

It was also investigated whether the simulation model could produce better
predictions if the parameter estimation was based on data similar to the case
to be predicted. Here, sections of the data starting with wind conditions
similar to the current wind values were selected and the 120 minutes following
these times were used to develop a model of the same form as used above.

To get a stable model it was necessary to use the covariance of the residuals.
Ten cases of possibly overlapping sections of the data were used. Figure 14
shows the wind predictions and Figure 15 shows the relative power predictions.
Again the predictions for power rapidly spread out to cover essentially the
whole possible range.

7 Prediction using power

While simulating the wind and generating the power follows the physical
mechanisms, the wind speed and the previous values of the wind speed may
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Figure 14: Simulation of wind (vertical scale ms−1), using a model based on
data similar to the initial wind, over 120 minutes from a given initial position.
Dotted blue lines are simulations, and solid red is actual data.
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Figure 15: Simulation of power relative to maximum power, using a model
based on data similar to the initial wind, over 120 minutes from a given initial
position. Dotted blue lines are simulations, and solid red is actual data.
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not be generally available. However, the power from the wind farm is available.
Prediction using power has some major disadvantages:

1. The wind to power curve is not monotonic;

2. There is a flat section of the power curve at intermediate wind speeds,
that does not allow a unique conversion from power to wind speed;

3. At low winds speeds the power generation is zero not allowing estimation
of low wind speeds;

4. It may not be known how many of the windmills are actually operational,
due to scheduled or unscheduled down time.

We believe that it would be possible to estimate whether a reduction in power
is due to low or high wind conditions. Assuming this is possible, the wind
speeds were converted to power and back to an estimated wind speed. This
set speeds between 14.5 and 22.5 to 18.5, and those over 27.5 to 29. These
modified wind speeds were transformed to the Gaussian values and used to
find the regression coefficients and the correlation matrix, so that predictions
could be made. Figure 16 shows the result of predicting the distribution of
relative power outputs using these values. The fit to the distribution from
the data (solid red line) is not as good as obtained using the wind speeds
(Figure 6).

The conversion from power output to wind speed used for Figure 16 is exact
except where wind to power relation is flat. In practice this relation will not be
exact and so predictions made from power data will be worse than seen here.
So the use of power to predict future power outputs is only recommended if
no other method is feasible.
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Figure 16: Ten repeats of prediction of power relative to maximum power
output, using wind speed estimated using power outputs (blue dashes), and
power output distribution from wind data (red curve).
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8 Additional effects

During misg a prospective approach was examined, to see whether one could
at least predict whether winds near a critical value on the speed-power curve
(15 or 25ms−1) were likely to go on to exceed that value. Episodes of wind
were examined to see whether the wind behaviour could be used to predict
whether the wind would exceed the crucial number or stay below. In the
end no short-term pattern of speeds could be found to distinguish between
episodes that went on to exceed the crucial number and those that did not.

The simulation model relies heavily on a regression of the current wind on
that ten minutes earlier. Simulation based on winds further back in time (for
example 30, 60, 120 or 300 minutes prior) is much less accurate. In that case
it may be useful to include into the regression model terms involving the time
of day, month of year and wind direction. During and subsequent to misg
considerable effort was put into investigating whether such terms would be
useful.

Figures 17 and 18 illustrate the correlations between wind speed at the Man-
awatu 1 wind farm (mwt1) and time-lagged winds at the nearby Manuwatu 2
(mwt2) farm or Cook Strait 2 farm (cks2). The numbers i = 1 : 61 refer
to the time lag 10(i− 1) minutes ago. The black lines give the correlations
ignoring wind direction (direction was not provided for the synthetic wind
farm data). The coloured dashed lines refer to correlations where the data
has been broken up into different subsets depending on the real (as opposed
to synthetic) contemporary wind direction at the nearby Palmerston North
Airport. For example East denotes north-easterly through to south-easterly
winds. Note the direction data was incomplete, and when the Palmerston
North wind speed was zero then no direction was available. For low speeds
the direction was also highly variable, and one could also argue that wind
direction at a lowland airport can not be expected to tell us much about
winds 80 metres above a range of hills some kilometres away: but it was the
best wind direction data available. The graphs show that mwt1 winds were
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much more highly correlated with easterly winds (red dashed line) from the
mwt2 farm or cks2 than with winds from other directions. Disappointingly,
ignoring the wind direction (black line) gave correlations almost as high as for
easterly winds: this is probably due to the data limitations stated above. For
mwt2, the shorter the lag, the stronger the correlation was with the nearby
mwt1 winds, indicating the value of having recent data from nearby sites.
By contrast Figure 18 for cks2 (some 150 km south) the relationship between
the correlation to mwt1 and the lag was much flatter, giving about the same
correlation 300 minutes (five hours) ago as for 10 minutes ago. Interestingly
these correlations were still stronger for easterly winds than for southerly (i.e.,
from the direction from Cook Strait) which is perhaps related to topography
and perhaps to the relatively large size of weather systems, leading to west
and east prevailing winds. This limited illustration does suggest that forecasts
may be improved by using meteorological data, or having anemometers at
the sites and at some distance east or west of the farms to give indication of
wind direction and speed.

Finally, the effects of time of day, and month of year, were considered. These
will be more important for predicting more than one lag in advance. We
illustrate by considering three models:

mwt1i = β0 + β1 (mwt1i−l) ; (11)
mwt1i = β0 + β1 (mwt1i−l) + β2 (mwt1i−l) ; (12)
mwt1i = β0 + β1 (mwt1i−l) + β2 (mwt1i−l) + γ(m)

+

2∑
k=1

[
Ak sin

(
2kπi

144

)
+ Bk cos

(
2kπi

144

)]

+

2∑
k=1

[
a(m)k sin

(
2kπi

144

)
+ b(m)k cos

(
2kπi

144

)]
. (13)

Equations (11) and (12) are regressions of wind speed on the l-lagged values
for the Manuwatu 1 and 2 wind farms. In addition (13) includes an overall
effect γ(m) for the month, sine and cosine terms on the second line represent



8 Additional effects M134

Table 4: R2 for Regression Models (11)–(13).

Model lag 1 lag 3 lag 6 lag 12 lag 30
10 min. 30 min. 1 hour 2 hour 5 hour

(11) 0.9659 0.9150 0.8565 0.7638 0.5388
(12) 0.9663 0.9176 0.8632 0.7753 0.5549
(13) 0.9664 0.9182 0.8650 0.7809 0.5769

some (possibly asymmetrical) diurnal effect as the land heats during the day
and cools during the night, and the third line coefficients a(m)k and b(m)k
allow for a modification of the diurnal effect by month. Table 4 summarizes
the results of fitting these three models to a two-year subset of the synthetic
data (model fitted to the power law wind0.75 to improve symmetry of residuals).
For the first ten minute lag, the R2 for model fit is scarcely increased from
model (11) to model (12) but in fact the regression coefficient is significant
with P-value < 10−15. Again the R2 scarcely increased for model (13) but the
first diurnal component of model (13) was significant (P-value = 5× 10−13)
and the monthly effect almost significant (P-value = 0.0602): however, the
month–diurnal interaction was not significant (P-value = 0.9532). For all
higher lags, the month-diurnal interaction in model (13) was highly significant,
and the additional terms in models (12) and (13) start to have an appreciable
effect on the R2. These results illustrate that some gains can be made by
allowing for the effect of time of day, and month of year, in regression models.
However it will require considerable modelling effort and more detailed data,
in order to have an appreciable effect on the accuracy of predicting the wind,
let alone the power.
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Figure 17: Correlations of mwt1 winds with time-lagged mwt2 winds, versus
time lag, namely 10(i− 1) minutes for i = 1 : 61. Split is by wind direction
at Palmerston North.
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Figure 18: Correlations of mwt1 winds with time-lagged cks2 winds, versus
time lag, namely 10(i− 1) minutes for i = 1 : 61. Split is by wind direction
at Palmerston North.
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9 Conclusions

This paper illustrates the modelling of correlated wind speeds and hence the
power output for fifteen existing or potential New Zealand wind farms. The
method demonstrated was able to predict the distribution of power generation
and the distribution of changes in ten minute power generation, to a usable
level of accuracy. The simulations also provided estimates of the accuracy of
these distributions.

The short term predictions of wind from given initial wind conditions showed
a progressive loss of accuracy over two hours. However due to the steep
relations in the conversion from wind speed to power, predictions of short
term power are disappointing.

Predictions made by locating similar wind conditions over the fifteen sites
gave largely similar results, as did fitting a local model to the similar wind
conditions. Again the conversion from wind speed to power greatly increases
the variation in the power predictions.

Predicting using power values, has several potential problems. An attempt
using the power values to estimate wind speed for a simulation produced
results worse than using wind directly. Using power without conversion to
wind speed may be possible but as it would lose information on high versus
low wind speeds a useful improvement in prediction accuracy is not expected.

There are multiple possibilities for improvement to the predictions, in partic-
ular the lag between the different sites has been set at a single value whereas
a value dependent on distance seems appropriate. Tests on the use of a local
model developed using hopefully similar wind conditions did not produce the
desired improvement; however, further investigation along these lines seems
promising.

The most promising approach from those considered seems to be the use of a
local model developed from similar wind conditions. Additional data, such as
additional near sites and wind direction, to assist in getting good matches to
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the current conditions should improve the predictions. Experience with the
current algorithms indicates this could easily be done sufficiently quickly to
make real time predictions.

An open question is how much information from weather forecasts would assist
in prediction. Short-term predictions should be improved by information on
wind speed and direction from nearby sites. The data used in this study was
produced using numerical weather forecasts matched to known conditions.
The thesis by Cutler (2009) takes a similar approach using numerical weather
predictions around the wind farm site.
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A Notation

aj coefficient of the previous value yi,j in the regression for
yi+1,j

bj,k coefficients of (yi−2,k + yi−3,k + yi−4,k) in the regression
for yi+1,j

cov(xi,j) covariance function of the matrix xi,j
εi,j the regression error term on the Gaussian scale for the

ith data row and jth site
ei,j the residual from the regression for the ith data row and

jth site
ε∗i,j the simulated residual on the Gaussian scale for the

ith data row and jth site
Γ(x,α,β) the gamma cumulative distribution function, shape α and

scale β
Γ−1(u,α,β) the inverse gamma cumulative distribution function,

shape α and scale β
Φ(x) the Gaussian cumulative distribution function with mean

zero and unit variance
Φ−1(u) the inverse of the Gaussian cumulative distribution func-

tion
uij the uniform distributed value calculated from xij
u∗
ij the simulated uniform distributed value calculated from y∗ij
xij the wind speed data at time i (10 minute intervals), and

site j
x∗ij the simulated wind speed at time i (10 minute intervals),

and site j, calculated from u∗
i,j

yij the Gaussian distributed value calculated from uij
y∗ij the simulated Gaussian distributed value used to calculate

to u∗
ij

γ(m) parameter representing the main effect of month on wind
Ak,Bk coefficients for sinusoidal terms representing diurnal effects

on wind
a(m)k,b(m)k coefficients representing how diurnal sinusoidal effects are

modified according to month
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