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A high order algorithm for ordinary boundary
value problems
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Abstract

The method of analytic continuation has been used to obtain nu-
merical solutions of nonlinear initial value problems. Here we formu-
late the problem in terms of characteristic functions that form a Par-
tition of Unity. This method allows us to extend an approximate local
solution to a global solution that can be expressed in closed form as
a polynomial whose coefficients are piecewise constant functions. An
error bound is calculated and used to prove uniform convergence to
the exact solution as the number of partition points approaches infin-
ity. Using a shooting method we also find approximate closed form
solutions of nonlinear boundary value problems with arbitrarily high
order of accuracy. The solution obtained is useful when a closed form
expression is required.
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1 Introduction

We wish to find approximate solutions in closed form of the nonlinear system
of differential equations of order M

dy

dx
= f(x, y) , (1)

for x on an interval I = [a, b] with initial or boundary conditions and with
arbitrarily high order of accuracy. The function f(x, y) is a vector function
f : I × RM 7→ RM that is assumed to be analytic in a domain D of I × RM

and y is an M -dimensional vector.

One technique used to develop a high order algorithm for the initial value
problem (ivp) involves the use of an iterative method based on analytic
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continuation [1, 2]. This method has been used to obtain numerical solutions
of (1) subject to the initial condition y(x0) = y0 [3].

In this article we reformulate the problem in terms of characteristic func-
tions that constitute a Partition of Unity. This allows us to extend a local
solution to the whole interval [a, b] and also perform an error and convergence
analysis of the problem with a considerable simplification of the algebra in-
volved.

Viera [4] used characteristic functions to find approximate closed form
solutions of linear boundary value problems in an infinite domain. In that
case, the method also yields a closed form expression for the eigenvalue equa-
tion. In this article, characteristic functions are used to obtain the solution
of nonlinear ivps in closed form and then use a shooting method to extend
the technique to solve nonlinear boundary value problems (bvp).

As an illustration of how the technique is applied, we use the Taylor series
method to calculate the local solutions. The approximate global solution is
then written in closed form as a single polynomial whose coefficients are
piecewise constant functions of x.

2 Initial value problem

2.1 Problem formulation

A partition of I = [a, b] is introduced with N + 1 points and N subintervals
In = [xn, xn+1) given by

pN : a = x0 < x1 < · · · < xN = b .

The partition norm is defined by |pN | = maxn=0,1,...,N−1 |xn+1 − xn| so that
|pN | → 0 as N →∞ . Introduce the characteristic function of the interval In
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defined by

χn =

{
1, if x ∈ In ,
0, otherwise.

The set of functions χn form a Partition of Unity where
∑N−1

n=0 χn = 1 for each
x ∈ I . They also form an orthogonal set with respect to real multiplication,

χnχm =

{
0, n 6= m,

χn, n = m.
(2)

These properties are used to extend a local solution globally to the inter-
val [a, b] as follows.

Let y = ψ(x;x0) be a local solution of (1) valid in a neighbourhood of
x = x0 . This is called the initial local solution. Introduce the piecewise
constant function

xN =
N−1∑
n=0

xnχn . (3)

The Partition of Unity then allows us to extend the initial solution globally
by evaluating it at x0 = xN , thus,

y = ψ(x;xN)

= ψ
(
x;
∑N−1

n=0 xnχn

)
=

N−1∑
n=0

ψ(x;xn)χn . (4)

The equality of the last two expressions in (4) is easily established by taking
a value of x ∈ Ij . Then the two expressions become equal to ψ(x;xj) by the
properties of χj mentioned above. To ensure continuity of the solution at the
partition points we impose the condition

ψ(xn;xn−1) = ψ(xn;xn) , n = 1, 2, . . . , N − 1 . (5)
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Equation (4) has two main implications: the global solution on [a, b] is rep-
resented

1. as the piecewise superposition of components, each of which is valid on
the interval In, for n = 0, 1, . . . , N − 1 ; or

2. as a single function, whose parameter x0 has been replaced by a piece-
wise constant function xN that approaches the continuous variable x
as N →∞ .

If the initial local solution ψ(x;x0) is expressed in terms of a power series and
if the radius of convergence of the series defined on In is Rn ≥ |xn+1−xn| for
n = 0, 1, . . . , N − 1 , then (4) and (5) are equivalent to applying the method
of analytic continuation to extend the initial solution globally to [a, b]. The
formulation using characteristic functions, however, provides an effective tool
that allows application of the method to more difficult problems such as
finding solutions of nonlinear partial differential equations.

2.2 Local solution

In order to illustrate how the characteristic functions are used to express
a global solution, we calculate the local solutions using the Taylor series
method. Let the Taylor expansion of the initial solution ψ(x;x0) about x =
x0 be

ψ(x;x0) = ψK(x;x0) + TK(x;x0, ξ0) , (6)

where

ψK(x;x0) =
K∑
k=0

ψ(k)(x0)

k!
(x− x0)

k , (7)

TK(x;x0, ξ0) =
ψ(K+1)(ξ0)

(K + 1)!
(x− x0)

K+1, (8)
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are the Taylor polynomial of degree K and the corresponding Lagrange form
of the remainder, respectively, and ξ0 ∈ (x0, x) ⊂ I0 . The derivatives in the
expansion are determined by successive differentiation of equation (1):

ψ(0)(x0) = y0 ,

ψ(1)(x0) = f(x0, y0)

ψ(2)(x0) =
[∂f
∂x

+ f(x, y)
∂f

∂y

]
(x0,y0)

...

ψ(K+1)(x0) =
[( ∂
∂x

+ f(x, y)
∂

∂y

)K
f(x, y)

]
(x0,y0)

. (9)

Cauchy used the method of Majorants to calculate bounds for the coeffi-
cients and establish the following conditions under which the series solution
converges.

If the function f(x, y) is analytic in the neighbourhood of the point (x0, y0),
equation (1) has a unique solution y = y(x) which is analytic in the neigh-
bourhood of x0 and satisfies the initial condition y(x0) = y0 , [1, 2].

2.3 Global solution

Neglecting the remainder term we approximate the local solution (6) by
ψ(x;x0) ≈ ψK(x;x0) . Replacing x0 = xN , the approximate global solu-
tion ψNK is written in the form

ψNK(x) ≡ ψK(x;xN)

= ψK

(
x;
∑N−1

n=0 xnχn

)
=

N−1∑
n=0

ψK(x;xn)χn , (10)
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where

ψK(x;xn) =
K∑
k=0

ank
k!

(x− xn)k , ank = ψ(k)(xn) . (11)

The continuity condition (5) becomes

ψK(xn;xn−1) = ψK(xn;xn) , n = 1, 2, . . . , N − 1 .

If required, the expression for ψNK(x) in (10) is written in a more compact
form as a single polynomial of degree K

ψNK(x) ≡ψK(x;xN)

=
K∑
k=0

ψ(k)(xN)

k!
(x− xN)k

= αN0 + αN1 x+ · · ·+ αNKx
K , (12)

where αNj for j = 0, 1, . . . , K , are piecewise constant functions of x. Note
that xN → x as N → ∞ . Hence, αNj → 0 as N → ∞ for j = 1, 2, . . . , K ,
and αN0 approaches the exact solution in that limit.

3 Error bound and convergence

In order to calculate a uniform bound for the error, we globalize the remainder
term (8) by applying to it the same process we used to obtain (10). By
analogy with (3) we introduce the sequence of intermediate values

ξN =
N−1∑
i=0

ξiχi ,

where ξi ∈ (xi, x) ⊂ Ii and evaluate (8) at (ξ0;x0) = (ξN ;xN) . The vector
absolute error is then defined by

ENK(x) = TK(x;xN , ξN)



3 Error bound and convergence C998

=
ψ(K+1)(ξN)

(K + 1)!
(x− xN)K+1

=
ψ(K+1)

(∑
iξiχi

)
(K + 1)!

(x−
∑

nxnχn)K+1

=
∑
i

∑
n

ψ(K+1)(ξi)

(K + 1)!
(x− xn)K+1χiχn

=
N−1∑
n=0

ψ(K+1)(ξn)

(K + 1)!
(x− xn)K+1χn ,

where the orthogonality (2) of χn is used to reduce the double summation to
a single sum in n. Taking the Euclidean norm gives the scalar error

eNK(x) = ‖ENK(x)‖

≤ 1

(K + 1)!

N−1∑
n=0

∥∥ψ(K+1)(ξn)
∥∥(x− xn)K+1χn

≤ |pN |K

(K + 1)!
SNK , (13)

where |pN | is the partition norm and

SNK =
N−1∑
n=0

∥∥ψ(K+1)(ξn)
∥∥(xn+1 − xn) ≥ 0

is a Riemann sum. Since by the Cauchy theorem mentioned in Section 2.2
the solution is an analytic function, the derivative

∥∥ψ(K+1)(x)
∥∥ is continuous

and bounded. Defining

MK = max
x∈[a,b]

∥∥ψ(K+1)(x)
∥∥ ,

gives

SNK ≤MK

N−1∑
n=0

(xn+1 − xn) = MK(xN − x0) ,
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and the following error bound is obtained

eNK(x) ≤ BNK , BNK =
|pN |K

(K + 1)!
MK(xN − x0). (14)

Hence, eNK(x) → 0 uniformly and the approximate solution converges uni-
formly to the exact solution with convergence rate O(|pN |K) as N →∞ for
fixed K.

4 Boundary value problem

4.1 Shooting method

We now use the shooting method to solve the second order nonlinear bound-
ary value problem

d2y

dx2
= f(x, y, y′), x ∈ [a, b], y(a) = α , y(b) = β , (15)

by replacing it with an equivalent ivp [6] of the form

d2y

dx2
= f(x, y, y′), x ∈ [a, b], y(a) = α , y′(a) = t . (16)

Recall that the second order equation can always be written as a system of
equations of the form (1). If y(x, t) is the solution of (16) and if t = t0 , where
t0 is the solution of the nonlinear transcendental equation

y(b, t0)− β = 0 , (17)

then the ivp (16) is equivalent to the bvp (15). Some conditions ensure
existence and uniqueness of the solution of the bvp (15) [5, e.g.].
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Table 1: L2 norm of absolute error eNK(x) and error boundBNK forK = 10
and several values of the partition size N . For comparison with Table 2, the
last column shows approximate values of execution time in seconds.

N ‖eNK(x)‖L2 BNK cpu
10 0.40×10−13 0.16×10−11 15
50 0.15×10−19 0.17×10−18 50

100 0.27×10−22 0.16×10−21 90
200 0.52×10−25 0.16×10−24 210
400 0.10×10−27 0.72×10−27 450

4.2 Example

We now find the approximate solution ψNK of the boundary value problem

d2y

dx2
= y3 − yy′ , x ∈ [1, 2] , y(1) = 1/2 , y(2) = 1/3 , (18)

and compare it with the exact solution ψ(x) = 1/(x + 1) . The solution
of (17) with b = 2 and β = 1/3 is found using the method of false position
giving a value of t0 = −0.24999 . . . . It is not difficult to automate the search
of two initial guesses of opposite sign to be used by false position to compute
the root to the high level of accuracy required by the method.

Table 1 shows the L2 norm of the actual error eNK(x) = |ψ(x)−ψNK(x)| ,
using the exact solution ψ(x). The table also shows the error bound BNK

calculated using (14) for K = 10 and several values of the partition size N .
Table 2 gives the L2 norm of eNK and the bound BNK for N = 10 and several
values of the Taylor polynomial order K.

For comparison, the last column in both tables shows approximate exe-
cution time in seconds. When (N,K) = (200, 10) (Table 1), the error bound
BNK = O(10−24). This computation takes about 210 seconds to execute.
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Table 2: L2 norm of absolute error eNK(x) and error bound BNK for
N = 10 (∆x = 0.1) and several values of the Taylor polynomial order K.
For comparison with Table 1, the last column shows approximate values of
execution time in seconds.

K ‖eNK(x)‖L2 BNK cpu
5 0.11×10−6 0.17×10−5 10

10 0.40×10−13 0.16×10−11 15
20 0.39×10−26 0.55×10−24 30
40 0.45×10−52 0.19×10−49 100
80 0.38×10−102 0.69×10−101 430

When (N,K) = (10, 20) (Table 2), the error bound has the same order of
magnitude but the computation takes only about 30 seconds to complete
(seven times faster).

On the other hand, the computations in the last row of each table, both
take approximately the same amount of time to execute (≈ 450 sec). How-
ever, in Table 1 the error isO(10−27) whereas in Table 2 the error isO(10−101),
a substantial improvement. This behaviour is due to the exponential depen-
dence of BNK on the parameter K in equation (14) and the (K + 1)! term
in the denominator.

5 Discussion

We have formulated the calculation of approximate solutions of nonlinear ini-
tial and boundary value problems in terms of the characteristic functions χn
of the interval [a, b]. These functions form a Partition of Unity of [a, b] and
hence are used to extend a local solution valid in the neighbourhood of x = a
to the whole interval [a, b].
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The technique not only allows us to obtain (approximate) solutions in
closed form but error analysis and convergence calculations are considerably
simplified, as shown by the analysis of Section 4. This technique has not been
used previously in the context of ordinary nonlinear differential equations.

As an example, we calculated the local solutions using the Taylor series
method. We then used a specific differential equation to compute explicitly
the approximate solution and compare with the known exact solution. We
emphasize that other ways of computing local solutions could be used just
as well. Work is currently in progress to extend the method to solve initial
value problems for partial differential equations.

The following pseudocode uses the Taylor series method to calculate the
solution of the second order ivp

d2y

dx2
= f(x, y, y′), x ∈ [a, b], y(a) = y0, y′(a) = y′0 ,

and is implemented using a computer algebra system.

Input : a, b, f(x, y, y′), y0, y
′
0, N , K

Output : Approximate solution

ψNK(x) =
N−1∑
n=0

K∑
k=0

ank
k!

(x− xn)kχn

1: ∆x = (b− a)/N
2: Calculate derivatives

ψ(k)[x, y(x)] =

(
∂

∂x
+ f(x, y)

∂

∂y

)k−1

[f(x, y)], k = 1, . . . , (K + 1)

3: Initialize first two coefficients: a00 = y0 , a01 = y′0
4: for n = 0, . . . , (N − 1) do
5: for k = 2, . . . , (K + 1) do
6: Calculate derivatives at (x, y) = (xn, yn) , ank = ψ(k)[xn, yn]
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7: end for
8: Calculate local solutions

ψK(x;xn) =
K∑
k=0

ank
k!

(x− xn)k

dψK
dx

(x;xn) =
K∑
k=1

ank
(k − 1)!

(x− xn)k−1

9: Update partition points and function values xn+1 = xn + ∆x , yn+1 =
ψK(xn+1;xn) , y′n+1 = dψK

dx
(xn+1;xn) .

10: Update first two coefficients to ensure continuity of global solution:
a(n+1)0 = yn+1 , a(n+1)1 = y′n+1

11: end for
12: Construct final solution:

ψNK(x) =
N−1∑
n=0

ψK(x;xn)χn
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