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A direct search conjugate directions algorithm
for unconstrained minimization
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(Received 7 August 2000)

Abstract

A direct search algorithm for unconstrained minimization of smooth
functions is described. The algorithm minimizes the function over a
sequence of successively finer grids. Each grid is defined by a set of
basis vectors. From time to time these basis vectors are updated to
include available second derivative information by making some basis
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vectors mutually conjugate. Convergence to one or more stationary
points is shown, and the finite termination property of conjugate di-
rection methods on strictly convex quadratics is retained. Numerical
results show that the algorithm is effective on a variety of problems
including ill-conditioned problems.
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1 Introduction

There has been much recent interest in derivative free methods for uncon-
strained optimization [1, 6, 9]. A variety of provably convergent methods
have been described, including ones based on line searches, trust regions,
and on grids. The algorithm presented here is in the last category, and uses
the convergence theory developed in [2].

A minimizer of a given C1 objective function f : Rn → R is sought,
where the gradient ∇f of f is locally Lipschitz. The algorithm does not
make explicit use of ∇f , but minimizes f by examining it on a sequence
{G(m)}∞m=1 of successively finer grids. Each grid G(m) is defined by a set of n

linearly independent basis vectors V (m) =
{
v(m)
i : i ∈ 1, . . . , n

}
. The points

on the grid G(m) are

G(m) =

{

x ∈ Rn : x = x(m)
o + h(m)

n∑

i=1

ηiv
(m)
i for integer ηi ∀i ∈ 1, . . . , n

}

The parameter h(m) is referred to as the mesh size, and is adjusted as m is
increased in order to ensure that the meshes become finer in a manner needed
to establish convergence. The point x(m)

o is included to allow each grid to
have a different origin to its predecessor. The grid points are referenced via
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η rather than x to avoid the accumulation of round off errors from repeated
movements on G(m).

The algorithm seeks to minimize f over each grid G(m) by generating a
sequence of iterates {x(k)}∞k=1, where a minimiser of f over a grid is defined
as follows:

Definition 1 (Grid local minimum) A point x on the grid G(m) is de-
fined as a grid local minimum if and only if

f(x+ h(m)v) ≥ f(x) and f(x− h(m)v) ≥ f(x) ∀v ∈ V (m)

This definition is motivated by the observation that if

(∇f(x))T v ≥ 0 and (∇f(x))T (−v) ≥ 0 ∀v ∈ V (m) (1)

then x is a stationary point of f (see e.g. [2]). The conditions which define
a grid local minimum are a finite difference approximation to this. In each
main iteration of the algorithm, a grid G(m) is selected using previous infor-
mation, and a grid local minimiser of f over G(m) is sought through a series
of line searches along the directions in V (m). In practice, a finite number of
alterations to the grid are permitted during the line searches. An outline of
the algorithm’s form is as follows:

(i) Initialize all variables. k = 1.
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(ii) Execute any finite process. If descent is obtained, let x(k+1) be the low-
est known point and increment k. Search cyclically along the directions
v1, . . . , vn for grid points which are lower than the current iterate. Each
time a line search yields descent, x(k+1) is chosen as the lowest known
point, and k is incremented. When a grid local minimum is found,
proceed to the next step.

(iii) Execute any finite process. If descent is obtained, let x(k+1) be the
lowest known point and increment k. Form a new grid with its origin
at the current lowest iterate. If stopping criteria are not satisfied, go
to step (ii).

It is shown in [2] that, under mild conditions, an algorithm with this
framework generates a sequence of grid local minima which converge to one
or more stationary points of f . For convenience this theorem is restated here,
with a slight specialization to reflect the definition of a grid local minimum
used herein.

Theorem 2 Given

(a) The sequence of iterates {x(k)}∞k=1 is bounded;

(b) f(x) is continuously differentiable, and its gradient ∇f(x) is Lipschitz
in any bounded region of Rn;
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(c) There exist positive constants K and τdet such that | det(v(m)
1 . . . v(m)

n )| ≥
τdet and ‖v(m)

i ‖ ≤ K for all m and i; and

(d) h(m) → 0 as m → ∞;

then each cluster point x̂(∞) of the subsequence {x̂(m)} ⊆ {x(k)} is a stationary
point of f(x). Here each x̂(m) is the grid local minimum of G(m) found by the
algorithm.

Proof: See [2]. ♠

2 General Description of the Algorithm

The members of V (m) are chosen to maintain any known second deriva-
tive information in the form of mutually conjugate directions. The set of
directions V (m) is divided into two subsets: V (m)

c = {v(m)
1 , . . . , v(m)

c } and

V (m)
nc = {v(m)

c+1, . . . , v
(m)
n }. The members of Vc are regarded as mutually con-

jugate, whereas the members of Vnc are not. These basis vectors form the
columns of the matrix V (m) =

[
v(m)
1 . . . v(m)

n

]
. For convenience the matrices

V (m)
c and V (m)

nc will be used to refer to the first c and the last n− c columns
of V (m) respectively.



2 General Description of the Algorithm C484

The algorithm repeatedly conducts line searches along the directions in
V (m) until a grid local minimum is found. Between grid local minima, existing
members of V (m)

c are not changed during these line searches. Each member of
V (m)
nc can be changed once between grid local minima. This occurs when v ∈

V (m)
nc is removed from V (m)

nc , and replaced by a new conjugate direction which
is then included in the set V (m)

c . These new conjugate directions are generated
using the parallel subspace theorem (see e.g.. [3, 7, 8]). This process continues
until a grid local minimum is found. The directions in V (m)

c are then scaled
so that they have unit estimated curvature along them. This ensures that,
when c = n, VcV T

c is the inverse Hessian on a strictly convex quadratic.

Each new conjugate direction changes the grid G(m). Each such grid alter-
ation removes a vector from Vnc, hence only a finite number of such alterations
can be made without locating a grid local minimum. These alterations are
permitted as part of the finite process in step (ii) of the algorithm outline.

At each grid local minimum, if less than a full set of conjugate directions
is known, then these are retained. Otherwise the members of V (m) are re-
ordered, the conjugate directions are no longer regarded as such, and the
process begins again with c = 1. On each new grid the conjugate directions
are searched first. This minimizes the number of line searches needed to
generate new conjugate directions.

At each grid local minimizer, a second order estimate ĝ(m)
v of V T∇f is

obtained. On noting V V T approximates the inverse Hessian, the Newton
step p = −(∇2f)−1∇f can be estimated. The algorithm conducts a brief
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search along p for a lower point before selecting the next grid. This search
forms part of the finite process in step (iii).

2.1 The Line and Ray Searches

The form of the algorithm requires that a search from an iterate x along
v(m)
i may be abandoned only after f has been calculated at x + h(m)

i v(m)
i

and x − h(m)v(m)
i . Hence if the algorithm searches along all n directions

v(m)
1 , . . . , v(m)

n from x without finding a point lower than x, then x is a grid
local minimum. If a lower point than x is located, then the algorithm searches
further along that direction. More precisely, if f(x + h(m)v(m)

i ) < f(x) then

a ray search along the ray x + αh(m)v(m)
i , α > 0 is performed; otherwise if

f(x − h(m)v(m)
i ) < f(x) a ray search along the ray x − αh(m)v(m)

i , α > 0 is
performed; otherwise the line search is terminated unsuccessfully.

Each ray search from x along vo calculates f(x+αh(m)vo) at successively
larger integer values of α as long as a decreasing sequence of function values
is obtained. When the last value is not lower than the second to last value,
then the ray search is terminated, and the penultimate α value determines the
new iterate. The first two values are α = 1 and α = 2, unless vo = −v(m)

i , in
which case the second value is α = −1. Each subsequent α value is calculated
using the formula α = max (α + 1,min(8α, .αq + 0.5/)) Here .·/ denotes the
floor function, and αq is defined as the minimizer of the one dimensional
quadratic interpolating the last three points on the line x+αh(m)vo at which
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f was calculated. If the interpolating quadratic is not strictly convex, then
αq = 8α is used.

3 The Main Algorithm

The basic structure of the algorithm is as follows

1. Initialize m = k = c = 1, i = 0, starting point x(0). Set xb =
‘unknown’, h(0) = ∞, h(1) = 1, and V (1) = In.

2. (a) Set i = i+ 1. If i > n, set i = 1. If i = 1 set xold = x(k).

(b) execute a line search along the direction v(m)
i from x(k).

(c) if i = c, c < n, and xb 0= ‘unknown’, then augment the set of
conjugate directions as described in section 3.2.

(d) if a grid local minimum has been found go to step 3, otherwise
alter h as specified in section 3.1.

(e) if i = n do a ray search along x(k)+α(x(k)−xold), α > 0, α integer.
Go to step 2(a).

3. Calculate g(m)
v and scale each member of V(m)

c so the estimated curva-
ture along each direction is unity.

4. Perform a 2 point line search along the quasi-Newton direction.
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5. If f(xe) < f(x(k+1)), then set x(k+1) = xe.

6. Choose h(m+1) = h(m)/sr and updatesr.

7. If c ≥ n set c = 1, and xb = ‘unknown’. Set v(m+1)
1 = v(m)

n , set

v(m+1)
i = v(m)

i−1 for all i = 2, . . . , n. Orthogonalize V (m+1).

8. Set i = 0, increment m, and go to step 2.

The variable i is the index of the direction being used in the line search.

Here ĝ(m)
v ≈

(
V (m)

)T
∇f(x̂(m)) is the estimated gradient of f(x+h(m)V (m)η)

with respect to h(m)η. At each grid local minimiser x̂(m), the function value
is known at each of the points x̂(m) ± h(m)v(m)

i , i = 1, . . . , n, and so central
difference estimates along each v(m)

i directly yield each element of ĝ(m)
v .

In step 7 V (m) is orthogonalized by post-multiplying it by an orthogonal

matrix Q, where Q is chosen so that QT
(
V TV

)(m)
Q is a diagonal matrix.

Orthogonalizing V (m) in this way leaves the estimate
(
V V T

)(m)
of the inverse

Hessian unaltered.

3.1 Choosing the mesh size

Each time a new grid is selected in step 6, h(m) is divided by a factor sr,
and the scale down factor sr is then updated via the following process: if the
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number of line searches on the previous grid is exceeds 4n+ n2/2 then sr is
reduced according to the formula

sr = max (1 + [sr − 1]/4, smin) .

Otherwise, if the number of line searches on the previous grid is less than 2n
then sr is increased using the formula:

sr = min (1 + 2 (sr − 1) , smax) .

Here smax ≥ smin ≥ 1 is required. The values smin = 1.01 and smax = 8
were used to generate the numerical results presented herein. The reason for
this adaptive strategy for reducing h is to allow grids to become fine quickly
when grid local minima are being found quickly, but to avoid grids that are
too fine. In the latter event, if the grid is poorly oriented then many line
searches may be made before a grid local minimum is found, and until a grid
local minimum is found there is only limited scope for re-orienting the grid.
The ray search in step 2(e) is also used to speed up the location of a grid
local minimum on each grid.

For the same reason, every time n2 + 8n consecutive line searches are
executed without leaving step 2 the algorithm attempts to increase h at the
end of step 2(d) according to the formula

h(m) = min
(
2h(m), h(m−1)/smin

)
.

The use of h(0) = ∞ allows the algorithm to scale the initial grid up as much
as is necessary to obtain a grid local minimum. These alterations are part of
the finite process in step (ii) of the algorithm outline.
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3.2 Generating the Set of Conjugate Directions

When f is a strictly convex quadratic, the searches along the directions in
V (m)
c allow the minimizer xb of f over the manifoldM to be calculated, where

M = {xb+Vcζ : ∃ζ ∈ Rc}. Provided a non-zero step occurs in the following
n − c line searches along the directions in V (m)

nc , the sequence of iterates is
translated off M. The next searches along the directions in V (m)

c then allow
the minimizer xe of f on a manifold parallel to M to be calculated. The
direction xe − xb is conjugate to all members of V (m)

c (see e.g. [7, 3, 8]).

Using h(m)V (m)ηnew = xe−xb, the new conjugate direction xe−xb replaces
the direction vj in V (m)

nc for which the absolute value of the jth component
(ηnew)j of ηnew is maximal. The order of the remaining members of V (m)

nc is
retained, the new conjugate direction is transferred from V (m)

nc to V (m)
c , and

c is incremented.

If (ηnew)j = 0 for each j = c + 1, . . . , n then no displacement off the
manifold M has occurred, in which case the updateis abandoned, and xb is
set to xe. If the updateis successful, then xb is reset to ‘unknown.’

The ability to calculate the location of xb stems from the fact that each
line search provides function values at three or more points along the line in
question. This allows the step to that line’s exact minimizer to be calculated
for a strictly convex quadratic, by minimizing the one dimensional quadratic
interpolating the last three points at which f was calculated on the line.
The form of the line search guarantees this interpolating quadratic is strictly
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convex except when all three interpolated function values are equal. In the
latter case the middle interpolated point is taken as the line’s minimiser. The
contiguity of the searches along the members of Vc, and conjugacy means that
the sum of these steps to each line’s minimiser is the step to the minimiser
xb.

It can be shown that each updateto V is via either by scaling of columns,
or post-multiplication by a rank 1 matrix. Hence the determinant | det(V )|
in condition (c) of theorem 2 can be updated from iteration to iteration.

3.3 Scaling the members of Vc

At each grid local minimum, the directions in V (m)
c are scaled to incorporate

curvature information from the line searches along elements in V (m)
c . Let the

estimate of the second derivative of f at x̂(m) along the direction v(m)
i be

H(m)
i . Then

v(m+1)
i = v(m)

i

[
max

(
ε, H(m)

i

)]− 1
2 ∀i = 1, . . . , c (2)

so that the estimate of the second derivative of f at x̂(m) along each new
direction v(m+1)

i is 1, for i = 1, . . . , c. Here ε is a small positive constant
(10−8) used to avoid divide by zero problems. Although the form of the line
search means that Hi < 0 is impossible, Hi = 0 can occur when f(x) =
f(x+ hv) = f(x− hv).
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The scaling of v(m+1)
i in (2) may result in the violation of the bound

‖v‖ ≤ K in condition (c) of theorem 2, in which case v(m+1)
i is scaled so that

‖v(m+1)
i ‖ = K.

3.4 Stopping Conditions

The numerical results presented herein were generated using the simple test

‖ĝ(m)
v ‖2 ≤ τ (3)

where the stopping tolerance τ was set at 10−5. The use of gv in (3) is
preferred because, given V V T ≈ G−1

∗ ,

‖ĝv‖22 ≈ gTG−1
∗ g ≈ (x̂− x∗)

TG∗(x̂− x∗)

where the Taylor series approximation g(x) = G∗(x − x∗) has been used,
and where G∗ = ∇2f(x∗). Clearly, (3) provides an estimate of the difference
between the least known and optimal values of f .

More sophisticated tests [4] may be applied to the sequence of grid local
minima, but the ‘infrequent’ nature of this sequence reduces the value of such
tests.
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4 Exact Termination on a Quadratic

It has been shown in theorem 2 that the subsequence of grid local minimizers
converges to a stationary point. It is now shown that the algorithm possesses
the property of finite termination on strictly convex quadratics.

Theorem 3 Let f be a strictly convex quadratic of the form

f(x) = 1
2x

TGx+ aTx (4)

then the algorithm finds the exact minimiser x∗ of f(x) in a finite number of
function evaluations.

Proof: First, it is shown that the algorithm generates a full set of conjugate
directions unless it selects x∗ as an iterate before this process is complete.
Let Vc be the set of conjugate directions at the jth iteration, where x(j) has
been obtained from a search along vc. Let M = {x(j) + Vcζ : ∃ζ ∈ Rc}, and
let xb minimise f over M. Although the searches along the members of Vc do
not select xb as an iterate, they do provide enough information to calculate
xb exactly when f is of the form (4). It is first shown that either (a) xb = x∗;
or (b) a direction vnew conjugate to every member of Vc is generated.

To show (b) occurs it is sufficient to show that the algorithm performs a
set of line searches along the directions in Vc from an iterate x(k) 0∈ M, for
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some k > j. Together with the parallel subspace theorem, the first such set
of searches yields vnew.

If the algorithm takes a non-zero step along a direction in Vnc, the linear
independence of V ensures the subsequent set of searches along the directions
in Vc are completed, and take place off M. Otherwise the searches for Vnc

make no movement, and conjugacy ensures that one set of searches along
the directions in Vc will locate a grid local minimum. Steps 4 and 5 are
then executed, ensuring the next iterate x satisfies f(x) ≤ f(xb). If this
inequality is strict, then x 0∈ M. Otherwise x = xb, and the next n line
searches will either return xb as a grid local minimum or move to a lower
iterate (necessarily not on M). In the former case, the algorithm executes
step 4 at xb. If xb = x∗, the solution has been found, otherwise ∇f(xb)
is non-zero (because xb 0= x∗), and orthogonal to M. The use of central
differences means that∇f(xb) is known exactly. Now V is of full rank, and so
p = −V V T∇f(xb) is a non-zero direction of descent. The line &(α) = xb+αp,
α ∈ R intersects M at xb only. Step 4 of the algorithm looks at two points
on the line. These are xb + p and xb + αpp where the latter is the minimizer
of f over &(α). Now because p is a descent direction at xb it follows that
neither xb + p nor xb + αpp lie on M. Hence step 4 moves the sequence of
iterates off M.

The above argument shows the algorithm either encounters x∗, or gener-
ates a full set of conjugate directions. In the latter case gv = V T∇f , and,
when c = n, the inverse Hessian (∇2f)−1 = V V T because of the scaling in
step 3. Hence p = −V gv is the exact step to x∗, and step 4 of the algorithm
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ensures that this step will be taken. ♠

5 Numerical Results

The algorithm was tested on the first 19 test problems listed in [5]. The
results for these problems are listed in Table 1, where ‘# fcn’ denotes the
number of function evaluations performed, and f ! is the function value at
the final iterate. The second, starred, set of results for the helical valley
problem use h(1) = 0.9 rather than h(1) = 1. With the latter choice the
solution x∗ is a grid local minimizer of the initial grid, and so the algorithm
locates it artificially fast. The second set of results for Powell’s badly scaled
function (marked with a †) uses a stopping tolerance of τ = 10−8 rather than
τ = 10−5, as this lower accuracy is achievable at points far from the solution.
The results show that the algorithm is quite capable of achieving the higher
accuracy of τ = 10−8.

The algorithm was also tested on a family of quadratics of the form

f(x) = (x− 1)TGn(x− 1)

where 1 = (1, 1, . . . , 1)T and x(0) = π
(
1, 12 ,

1
3 , . . . ,

1
n

)T
. Here Gn is the n× n

tridiagonal matrix with all diagonal elements equal to 2, and all super- and
sub-diagonal elements equal to 1. Results are listed in Table 2, where the
( superscript denotes the value of the quantity taken at the final iterate x!,
and x∗ is the solution.
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The results show that the algorithm is effective on a wide variety of
problems which includes ill-conditioned problems. The property of exact
termination on strictly convex quadratics is verified by the numerical results.
The stopping condition is satisfied when f ≈ 10−5, yet the final function
values are many orders of magnitude smaller than this.

6 Conclusion

A provably convergent derivative free conjugate directions algorithm has been
presented. Successive grids are chosen to incorporate known second deriva-
tive information generated by use of the parallel subspace theorem. Conse-
quently the algorithm retains the property of exact termination on strictly
convex quadratics. This property is verified by numerical results for the
family of tridiagonal quadratics. Numerical results for general unconstrained
problems show that the algorithm is effective in practice, even on problems
which are ill-conditioned.
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