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Abstract

The accurate integration of stress-strain relations is an important
factor in element analysis for elasto-plastic problems. The conven-
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tional method for this problem is the Euler algorithm which divides the
whole integration process into a number of smaller substeps of equal
size. It is difficult to control the errors in such integration scheme. In
this paper, we will present a new algorithm for integrating strain-stress
relations. It is based on the third and the fourth order Runge-Kutta
method. This substepping scheme controls the errors in the integra-
tion process by adjusting the substep size automatically. In order to
implement the substepping scheme on parallel systems, a parallel pre-
conditioned conjugate gradient method is developed. The resulting
algorithms have been implemented on a parallel environment defined
by a cluster of workstation and their performance will be presented.
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1 Introduction

Computer architectures have been, and continue to be, undergoing progres-
sive development. New parallel computers are having significant influence
on finite element analysis. The use of large, complex elasto-plastic models
raises a number of questions in relation to accuracy and efficiency. Due to
the iterative algorithm used in the finite element analysis, an accurate inte-
gration algorithm is a key factor when implementing such simulation on the
parallel systems.

For elasto-plastic problem, if the stresses at an integration point cause
plastic yielding and an isotropic hardening rule is employed, the stresses are
found by solving a system of differential equations of the form

dσ

dT
= Dep(σ)∆ε, T ∈ [0, 1] (1)

where ∆ε is the incremental strain and Dep is the elasto-plastic matrix. In
Equation (1), σ|T=0 defines the stress state which already satisfy the yield
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criterion, and σ|T=1 defines the stress at an end of load increment or iteration.
Equation (1) defines a classical initial value problem, since ∆ε and the stress
state at T = 0 are known.

The conventional method for solving the system of differential equations
defined by Equation (1) is the Euler algorithm. As the Euler scheme is accu-
rate for very small time steps, it is usual to subdivide the whole integration
process into smaller substeps and compute the stress-strain response over
each substep. Traditionally, the number of substeps is determined from an
empirical rule and each substep is assumed to be of the same size[1]. Since
the predicted state of stress at the end of a loading increment may not lie on
the yield surface, a correction step is usually used to restore the stress back
to the yield surface. Although this method has been used widely in the finite
element codes, it has following disadvantages:

1. If the correction-step is applied after each substep, the computational
time will increase drastically. However, if it is done at the end of
integration, it does not significantly affect the accuracy [2].

2. Since the number of substeps is usually determined by an empirical
rule which is formulated by trial and error, the inappropriate choice of
the number of the substeps usually lead to lose of either accuracy or
efficiency.

In this paper, we will introduce a substepping scheme which can be used
to integrate the elasto-plastic stress-strain relation with an aim to control
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the error by adjusting the size of each substep automatically. The result-
ing algorithm has been applied to a parallel analysis of a three-dimensional
cantilever beam and its performance will also be presented.

2 Formulation of Runge-Kutta methods

The Runge-Kutta method is commonly used for numerical integration of or-
dinary differential equations. To calculate successive values of the dependent
variable y of the differential equation

dy

dx
= y′ = f(x, y) (2)

We write Equation (2) more compactly as

yi+1 = yi +

n∑
j=1

ajkj (3)

where

kj = hf

(
xi + pj−1h, yi +

j−1∑
l=1

qj−1,lkl

)
(j = 1, 2, · · · , n) (4)

in which, by definition,

P0 = 0 and

j−1∑
l=1

qj−1,lkl = 0 j = 1 (5)
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The a’s, p’s, and q’s must assume values such that Equation (2) accurately
yields successive values of y. These values are determined by making Equa-
tion (2) equivalent to a certain specified number of terms of a Taylor-series
expansion of y about xi.

Various Runge-Kutta methods are classified as (m, n) methods. A (5, 6)
method, for example, would be a fifth-order method requiring six function
evaluations per step. Runge-Kutta methods were among the earliest methods
employed in the numerical solution of differential equations, and they are
still widely used. The principal advantage of the Runge-Kutta methods is
their self-starting feature and consequent ease of programming. However,
the function of f(x, y) must be evaluated for several slightly different values
of x and y in every step of the solution.

3 Substepping scheme for integration process

It will be shown that methods of high order can be formulated for elasto-
plastic problems, which are much more efficient than the first order algo-
rithms used up to the present. Since the substepping scheme controls the
error by decreasing the step size, it definitely involves a large number of
substeps. As such, the cumulative effect of the per-step roundoff errors and
their magnification in calculating subsequent substeps must be minimized.
In this paper, we will employ Gill’s fourth-order Runge-Kutta method which
is known for its advantage of minimizing the roundoff error [6].
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The strategy is based on the observation that when iterating the Equa-
tion (1) for σk+1 we can obtain final approximations σK+1 using order m

σ(m) = σk + Dep∆ε (6)

We can easily construct a reference solution by using order n

σ(n) = σk + Dep∆ε (7)

This reference solution σ(n) can be considered as an ‘embedded’ solution [7].
Now, as an estimate for the local error E in the step from Tk to Tk+1 =
Tk + ∆T , we take

E = ‖σk+1
m − σ(n)‖ (8)

for some norm ‖ · ‖. Usually, one uses reference solution σ(n) such that the
orders of σ(m) and σ(n) differ by 1. Here we follow this approach and choose
n = m − 1.

Based on the above formulations, the error estimate after a time step ∆Tk

is obtained by comparing the estimated stress increments which result from
the third and Gill’s fourth order Runge-Kutta method. They are given by:

σk+1 = σk + (∆σ1 + 4∆σ2 + ∆σ3)/6 (9)

and

σ̂k+1 = σk +
1

6

[
∆σ1 + (2 −

√
2)∆σ2 + (2 +

√
2)∆σ3 + ∆σ4

]
(10)
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in which

σ1 = σk

σ2 = σk + 0.5∆σ1

σ3 = σk + 0.5(
√

2 − 1)∆σ1 + 0.5(2 −
√

2)∆σ2

σ4 = σk − 0.5
√

2∆σ2 + (1 + 0.5
√

2)∆σ3 (11)

Subtracting Equation (9) from Equation (10), we obtain an estimate of the
local truncation error in σk+1 according to

Ek+1 =
1

6

[
−(2 +

√
2)∆σ2 + (1 +

√
2)∆σ3 + ∆σ4)

]
(12)

As an estimate for the local error in the substep from Tk to Tk+1 = Tk +∆Tk,
we define the relative error for this substep as

Rk+1 =‖ Ek+1 ‖ / ‖ σ̂k+1 ‖ (13)

Then Rk+1 is compared with some prescribed tolerance tolsub and the step is
accepted if Rk+1 ≤ tolsub, and rejected otherwise. Furthermore, the value of
Rk+1 allows us to make an estimate for the asymptotically optimal stepsize:

∆Tk+1 = ∆Tk
4
√

tolsub/Rk+1 (14)

In case of rejection ∆Tk+1 is used instead of ∆Tk; in case of acceptance we use
∆Tk+1 to continue the integration. In order to reduce the substeps rejected,
we actually used

∆Tk+1 = ∆Tk · min
{

2, max
{

0.1, 0.9 4
√

tolsub/Rk+1

}}
(15)
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Figure 1: A typical cantilever beam

The constants 2 and 0.1 in this expression serve to prevent an abrupt change
in the substep size, and the safety factor 0.9 is added to increase the probabil-
ity that next substep will be accepted. As suggested by some researcher, for
example, in [8], some forms of stress correction must be used when the anal-
ysis involves strain (work) hardening. In this paper, a proportional scaling
of stresses is used.
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4 Performance analysis of substepping schemes

In order to illustrate the performance of the substepping scheme in the finite
element analysis, a computer programme was developed and has been applied
to a typical three dimensional cantilever beam (Figure 1). The analyses were
carried out in 10 equal load increments. To test the influence of different
tolerance on the accuracy, an “ideal” run for each analysis is implemented
with the same mesh, the same load increments and the same global solution
technique, but Sloan’s fifth-order Runge-Kutta-England substepping scheme
is used to integrate the constitutive law [3]. The tolsub is set to be very small
(10−10) to ensure that the number of the substeps is sufficiently high so that
the drift from the yield surface can be ignored. These ‘ideal’ results are used
to compare with the Runge-Kutta (rk) method developed in this research
work and Sloan’s Modified Euler (me) scheme [3] with different tolerances.
The errors in the elasto-plastic stresses are computed using:

Error =
‖∑N

i=1(σi − σi
ideal)‖

‖∑N
i=1(σi

ideal)‖

To test the accuracy and efficiency of the substepping scheme, two anal-
yses for different problem sizes were carried out, one for the problem with
288 degrees of freedom (d.o.f) and 1620 integration points, another for the
problem with 432 d.o.f and 3240 integration points. For each analysis, four
different models are studied, that is
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1. Elastic-perfectly plastic, i.e. no strain hardening model. No stress
correction is employed;

2. Elastic-perfectly plastic model with stress correction;

3. Model with the linear strain hardening, but no stress correction;

4. Model with the linear strain hardening, and stress correction is em-
ployed.

Note that in all the following figures and tables, ‘****’ denotes the di-
verged solution due to the large error tolerances. ‘C’ means that stress correc-
tion is applied. nh denotes the elastic-perfect plastic model and wh denotes
the model which involves strain hardening.

4.1 Accuracy

The errors in the computed stresses from different algorithms with differ-
ent tolerance are listed in Table 1 and 2. With reference to the Table 1
and 2, it can be seen that, for the case with no strain hardening, we can get
the accuracy without stress correction which is adequate for the engineering
computation if tolsub is set to be smaller than 10−3. This accuracy can be
improved when the stress correction is employed. However for the analyses
with strain hardening, both the Runge-Kutta scheme and the Modified Eu-
ler scheme can not give an improved accuracy as tolsub decreases. This is
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Table 1: Results of errors for problem with 288 d.o.f with different tolerance
tolsub

1.0 10−1 10−2 10−3 10−4 10−5

nh me *** *** 1.07 1.6 × 10−2 4.3 × 10−3 3.9 × 10−4

rk *** *** *** 1.9 × 10−2 1.6 × 10−3 7.2 × 10−4

nh mec 0.26 0.24 1.8 × 10−2 4.9 × 10−4 4.1 × 10−5 4.1 × 10−6

rkc *** 0.28 7.9 × 10−2 7.6 × 10−3 1.5 × 10−4 6.9 × 10−6

wh me *** *** 0.89 0.88 0.87 0.87
rk *** *** *** 0.17 0.17 0.17

wh mec 0.13 9.3 × 10−2 5.9 × 10−3 2.5 × 10−4 1.5 × 10−5 1.69 × 10−6

rkc *** *** 1.5 × 10−2 4.5 × 10−3 4.9 × 10−5 3.4 × 10−5

Table 2: Results of errors for problem with 432 d.o.f with different tolerance
tolsub

1.0 10−1 10−2 10−3 10−4 10−5

nh me *** *** 7.4 × 10−2 3.6 × 10−2 2.8 × 10−3 3.2 × 10−4

rk *** *** **** 2.1 × 10−2 1.1 × 10−3 7.6 × 10−4

nh mec *** *** 3.8 × 10−2 6.3 × 10−4 3.8 × 10−5 4.0 × 10−6

rkc **** *** 0.18 1.1 × 10−2 1.6 × 10−4 9.2 × 10−6

wh me *** *** *** *** *** ***
rk *** *** *** *** *** ***

wh mec 0.13 9.3 × 10−2 5.9 × 10−3 2.5 × 10−4 1.5 × 10−5 1.7 × 10−6

rkc 0.19 0.14 2.6 × 10−2 2.0 × 10−3 1.8 × 10−4 7.3 × 10−6
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illustrated in Table (1) that for the problem with 288 d.o.f, the errors are
large no matter how the error tolerance is reduced. For the problem with 432
d.o.f which involves more integration points, large magnitude of errors cause
each analysis to diverge. It is important to note that, when stress correction
is used, the accuracy can be improved drastically. This implies that, due to
the approximation nature of the finite element method, yield surface drift
may occur with the stresses moving away from the yield surface. This de-
viation is practically independent of the integration scheme adopted. When
the model involves strain (work) hardening where the yield surface is moving
with loading increment, the drift is more significant. Since such discrepancies
are usually cumulative, it is important to ensure the the stresses are corrected
back to the current yield surface at each step of the calculation. Since we
apply the stress correction at the end of each substep, it does not affect the
accuracy significantly. However, it can make the computed stress fulfil the
plasticity criterion at the end of load increment (iteration) and avoid error
accumulation and therefore instabilities in the following load steps.

One of the conclusions of Sloan’s work on the substepping scheme [3] is
that stress correction is not required to improve the accuracy. However, the
results of the present study clearly indicate the importance of the role of
stress correction in the substepping scheme. The accuracy of the results can
be improved by at least an order of magnitude by using stress correction for
elasto-plastic problem involving strain hardening.



4 Performance analysis of substepping schemes C574

Table 3: Total substeps needed for analysis of problem with 288 d.o.f with
different tolerance

tolsub

1.0 10−1 10−2 10−3 10−4 10−5

nh me **** **** 16006 33790 85734 246458
rk **** **** **** 13154 34310 131360

nh mec 15266 14356 17384 33822 85792 247236
rkc **** 14506 11156 13394 34310 131460

wh me **** **** 7422 15918 42166 123714
rk **** **** **** 6360 17762 65992

wh mec 6258 6390 9498 20872 53640 157198
rkc **** **** 6090 7782 21670 83616

4.2 Efficiency

In Tables 3 and 4, we list the total number of substeps for overall solution
of different analysis. We can see that, the Runge-Kutta scheme generally
requires less substeps than the Modified Euler scheme for the fixed value
of tolsub. For tolsub which are equal to 10−3 and 10−4, the Runge-Kutta
scheme uses less than half of number of substeps consumed by the Modified
Euler scheme. This confirms that the high-order Runge-Kutta scheme does
not need more substeps to obtain high level of accuracy. Due to this, the
Runge-Kutta scheme usually uses less cpu time than the Modified Euler
scheme for the cases which tolsub are greater than 10−5. Application of
stress correction does not increase the computational time significantly, but
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Table 4: Total substeps needed in for analysis of problem with 432 d.o.f
with different tolerance

tolsub

1.0 10−1 10−2 10−3 10−4 10−5

nh me **** **** 40388 82688 205652 585420
rk **** **** **** 32748 83384 309676

nh mec **** **** 41804 82900 206028 586384
rkc **** **** 31296 34224 83600 310268

wh me **** **** **** **** **** ****
rk **** **** **** **** **** ****

wh mec 14988 18512 23100 49284 128380 372718
rkc 13968 14424 14724 19536 50824 194368

it does improve the accuracy considerably. Based on above analyses, we
will use the Gill’s fourth-order Runge-Kutta method in the following parallel
implementation.

5 Parallel preconditioned conjugate gradient

method

To implement the substepping scheme on the parallel systems, an efficient
algorithm for equation solution is necessary. Recently, Law [4] developed a
parallel conjugate gradient algorithm by using transformation relationships
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between the displacement (as well as force) vectors local to each proces-
sor and the corresponding global vectors. In the present implementation,
Law’s element-by-element algorithm has been modified to a substructure-
by-substructure algorithm and a diagonal preconditioner is used to acceler-
ate the convergence rate. In order to increase the convergence rate of cg

method further, a parallel minimal residual (mr) smoothing method is also
employed [5]. Throughout the process, the formation of global system of
equations is not performed. The storage space required for each processor
includes an substructure matrix and vectors. A parallel substructure precon-
ditioned conjugate gradient (ppcg) algorithm is now described.

Algorithm: Parallel Substructure Preconditioned Conjugate Gra-
dient combined with MR Smoothing

Initialization:

1: (a) {x(s)}0 = {z(s)}0 = 0
(b) {r(s)}0 = {f (s)}
(c) Compute [C](s)

2: Exchange [C(s)] with neighbour j

3: (a) [Cg
(s)] =

∑
j∈adj(s)[C

(j)] + [C(s)]

(b) {t(s)}0 = {s(s)}0 = [Cg
(s)]

(−1){r(s)}0
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4: Exchange {t(s)}0 with neighbour j

5: (a) {tg(s)}0 =
∑

j∈adj(s) {t(j)}0 + {t(s)}0

(b) {sg
(s)}0 = {p(s)}0 = {tg(s)}0

(c) ρ0
(s) = {tg(s)}T

0 {t(s)}0

6: (Merge Sum) γ0 = ρ0 =
∑

ρ(s)
0, s = 1, ..., p

Iterate k = 1, 2, · · · If γk/γ0 < tolerance terminate

1: (a) {h(s)}k = [K(s)]{p(s)}k−1

(b) βk
(s) = {p(s)}T

k−1{h(s)}k

(c) σk
(s) = βk

(s)/γk−1

2: (Merge Sum) 1/αk =
∑

σk
(s), s = 1, ..., p

3: (a) {x(s)}k = {x(s)}k−1 + αk{p(s)}k−1

(b) {r(s)}k = {r(s)}k−1 − αk{h(s)}k

(c) {t(s)}k = [Cg
(s)](−1){r(s)}k

4: Exchange {t(s)}k with neighbour j

5: (a) {tg(s)}k =
∑

j∈adj(s){t(j)} + {t(s)}
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(b) ρk
(s) = {t(s)}T

k{t(s)}k

6: (Merge Sum) ρk =
∑

ρk
(s), s = 1, ..., p

7: (a) {p(s)}k = {tg(s)}k + (ρk/ρk−1){p(s)}k−1

(b) µk
(s) = {sg

(s)}T
k({t(s)}k − {s(s)}k)

(c)θk
(s) = ({t(s)g }k − {s(s)

g }k−1)
T × ({t(s)}k − {s(s)}k−1)

8: (a) (Merge Sum) µk =
∑

µk
(s), θk =

∑
θk

(s)

(b) δk = −µk/θk

9: (a) {s(s)}k = {s(s)}k−1 + δk({t(s)}k − {s(s)}k−1)

(b) {s(s)
g }k = {s(s)

g }k−1 + δk({t(s)g }k − {s(s)
g }k−1)

(c) {z(s)}k = {z(s)}k−1 + δk({x(s)}k − {z(s)}k−1)
(d) γk

(s) = {sg
(s)}t

k{s(s)}k

10: (Merge Sum) γk =
∑

γk
(s)

11: Go To Step 1

g denotes the assembled vector.



6 Numerical results C579

6 Numerical results

The parallel computer used in this research is a Linux-Alpha workstation
cluster. The Linux-Alpha Cluster consists of twelve 533MHz Alpha LX164s
each with 256MB of memory and 5.3GBs of ide disk connected by a hp

fast Ethernet switch. The developed algorithms have been applied to the
elasto-plastic finite element analysis of a typical three dimensional deep can-
tilever beam (Figure 2). As usual, the two important metrics, speedup and
efficiency, are tested respectively. They are defined in the following form:

Speedup =
Time for solution on 1 process

Time for solution on p processes
(16)

and the efficiency by:

Efficiency =
Speedup

Number of processes
(17)

A horizontal strip-wise partitioning scheme is considered for this applica-
tion. This numerical experiment is designed to determine performance of the
parallel algorithms when a combination of good load balancing and reduced
interprocessor communication is employed.

The characteristics and performances of horizontal partitioning scheme
for 3-D deep beam are summarized in Table 5. From the results we can see
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Cantilever beam
Horizontal strip-wise partitioning
on 4 cpus

Figure 2: A three dimensional deep cantilever beam and the partitioning
scheme



6 Numerical results C581

Table 5: Performance of horizontal partitioning on fixed number of pro-
cessors, showing Efficiency E and Speedup S (continued next page).

Number of
processor

Number of
elements in
each sub-
structure

Number of
interface
nodes in
each sub-
structure

cpu time
on 1
processor
(sec)

cpu time
on n
processors
(sec)

S E (%)

2 480 25 87.70 44.52 1.97 98.5
960 45 360.62 184.31 1.96 97.8

1920 81 746.47 375.50 1.99 99.4
3840 153 1790.85 898.20 1.99 99.7
7680 289 5892.09 3015.00 1.95 97.7

15360 561 28936.26 14817.03 1.95 97.7
3 320 25 87.70 29.53 2.97 99.0

640 45 360.62 126.33 2.85 95.2
1280 81 746.47 276.80 2.70 90.0
2560 153 1790.85 624.97 2.87 95.5
5120 289 5892.09 1967.03 2.99 99.9

10240 561 28936.26 10059.02 2.88 95.9
4 240 25 87.70 22.23 3.95 98.6

480 45 360.62 92.64 3.89 97.3
960 81 746.47 191.25 3.90 97.6

1920 153 1790.85 460.38 3.89 97.3
3840 289 5892.09 1511.71 3.91 97.4
7680 561 28936.26 7342.32 3.94 98.5



6 Numerical results C582

Table 5: continued.

Number of
processor

Number of
elements in
each sub-
structure

Number of
interface
nodes in
each sub-
structure

cpu time
on 1
processor
(sec)

cpu time
on n
processors
(sec)

S E (%)

5 192 25 87.70 17.96 4.88 97.6
384 45 360.62 82.34 4.38 87.6
768 81 746.47 156.99 4.75 95.1

1356 153 1790.85 400.35 4.47 89.5
3072 289 5892.09 1189.82 4.95 99.0
6144 561 28936.26 6012.85 4.81 96.3

6 160 25 87.70 15.20 5.78 96.6
320 45 360.62 66.09 5.45 90.9
640 81 746.47 128.92 5.79 96.5

1280 153 1790.85 321.35 5.57 92.9
2560 289 5892.09 1023.00 5.76 96.0
5120 561 28936.26 4823.71 5.98 99.9
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that the performance of horizontal partitioning scheme in this application is
good. In fact, even for small problem size (i.e. 960 elements), almost perfect
results are obtained. This perfect results can also be attributed to, a) sub-
stepping scheme can integrate the strain-stress relations accurately, so it uses
less iterations, and thus makes the solution more efficient; b) the diagonal
storage scheme we used save the time wasted on zero fill-ins; c) the precondi-
tioner and mr smoothing improve the convergence rate of cg algorithm. It
clarifies that, to get an optimal performance on the parallel systems like the
workstation cluster on which the communication is very expensive, adoption
of the partitioning scheme must be based on the fact that such partitioning
scheme involves least amount of interprocessor communication.

7 Conclusion

In this paper, a substepping scheme which controls the error in the integra-
tion process by permitting the size of each substep to vary in accordance
with the behaviour of the constitutive law and a parallel substructure pre-
conditioned conjugate gradient method have been presented. This solution
algorithm does not require the formation of the global system equations.
Each processor in the parallel system is assigned a substructure and stores
only the information relevant to the substructure that the processor repre-
sents. The combination of these two algorithms have been applied to a typical
three dimensional elasto-plastic stress analysis. The result indicated that the
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combination of these algorithms shows a good speedup when increasing the
number of processors. In summary, the combination of these two algorithms
provides a powerful practical strategy for parallel finite element analysis of
elasto-plastic problems.
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