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Abstract

Observed changes in the metastability of the Southern Hemisphere
500 hPa circulation are examined using non-stationary cluster anal-
ysis techniques. The cluster methodology is a purely data-driven
approach for parametrisation whereby a multi-scale approximation
to non-stationary dynamical processes is achieved through optimal
sequences of locally stationary fast vector auto-regressive factor pro-
cesses and some slow (or persistent) hidden process switching between
them. Comparison is made with blocking indices commonly used in
weather forecasting and climate analysis to identify dynamically rel-
evant metastable regimes in the reanalysed 500 hPa circulation. Our
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analysis characterises the metastable regime in reanalysed observa-
tional data sets prior to 1978 as positive and negative phases of a
hemispheric mid-latitude blocking state with the Southern Annular
Mode (sam) associated with a transition state. Post 1978, sam emerges
as a true metastable state replacing the negative phase of the hemi-
spheric blocking pattern. Trends in the hidden state frequency of
occurrences correspond to declining blocking (coherent structures) and
increasing strength of the sam (zonal flow).
Subject class: 60
Keywords: cluster analysis, high dimensional data, climate

Contents
1 Introduction C234

2 Methodology C236
2.1 AIC: Akaike information criterion . . . . . . . . . . . . . . C239
2.2 Blocking indices . . . . . . . . . . . . . . . . . . . . . . . . C240

3 Results C241

4 Conclusions C243

References C245

1 Introduction

The formation of quasi-stationary high pressure systems in the atmospheric
mid-latitudes is often referred to as ‘blocking’. The formation of a coherent
blocking structure is necessarily associated with a reduction in the strength
of the zonal circulation and a corresponding enhancement of the meridional
motion. In the Southern Hemisphere (sh), mid-latitude blocks may persist
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on a time scale of the order of a week or longer. Charney and DeVore [3] first
proposed that the observed multiple weather regimes are quasi-stationary
or meta-stable states and that instability mechanisms are responsible for
initiating transitions between said states. The physical mechanism which
generates multiple equilibria is summarised as follows: strong zonal (eastward)
jets in the mid-latitudes and the Coriolis effect create meridional temperature
gradients, topography generates Rossby waves which in turn create drag on
the flow, pushing it westward [3, 24]. Under suitable conditions, and for
a particular value of the zonal wind, the waves might exhibit a resonant
response causing the large scale flow to become locked near the resonant wind
value. Thus, for particular values of zonal forcing, dissipation or topographic
height the flow will settle into either a state with winds near the zonal forcing
value or into one with winds near the resonant wind value, depending on
the initial conditions. Assessing seven years of analyses and forecasts from
the European Center for Medium Range Weather Forecasting operational
archives, Tibaldi et al. [20] found only one preferred region for blocking in the
sh, around 180◦ longitude, and that blocking in the sh was considerably more
difficult to characterise than in the Northern Hemisphere (nh). Pook and
Gibson [16] comprehensively reviewed the development of blocking indices
specific to the sh, as used in operational weather prediction at the Australian
Bureau of Meteorology. They noted that there are three well recognised
sh blocking regions located to the east or southeast of the continents along
latitude 45◦S and that the Australian block (including the Tasman Sea and
Southwest Pacific) is the most active. As blocking plays a critical role in
determining precipitation in Southern Australia, correct identification of such
events is of great importance [17].

Recently, Franzke et al. [7] applied a clustering method to systematically
identify metastable atmospheric regimes in high dimensional datasets gen-
erated by a barotropic model and an atmospheric general circulation model.
They employed a finite element clustering approach that decomposes the
phase space into overlapping clusters while simultaneously estimating the
most likely switching sequence among the clusters. The parameters of the
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clustering and switching were estimated by a finite element approach devel-
oped by Horenko [12]. The switching among the clusters is often described
by a Markov transition matrix [7], while metastable regime behaviour can be
assessed by inspecting the eigenspectrum of the associated transition proba-
bility matrix. Here we focus on the fem-bv-varx (finite element-bounded
variation-vector auto-regressive factor) method [10, 11] in combination with
the Akaike information criterion (aic) to determine the optimal cluster state,
as described in Section 2. O’Kane et al. [15] were the first to examine the rel-
ative merits of split-flow blocking indices and non-stationary cluster analysis
for the sh.

The purpose of this article is to assess changes to the metastability of the
sh atmospheric circulation based on transition sequences from the finite
element clustering [9, 11] and in comparison to operational split-flow blocking
indices [20, 23].

2 Methodology

In our approach we employ the fem-bv-varx method from Horenko [11]: a
bv-regularized fem-clustering based on the varx-distance metric,∥∥∥∥∥x(t) − µ(t) −

m∑
i=1

Ai(t)
∗x(t− iτ) − B(t)ut

∥∥∥∥∥ , (1)

with the aic (Section 7) to determine the optimal cluster state(s) K. We em-
ploy an empirical orthogonal function (eof) decomposition prior to clustering
to reduce the dimensionality, but do not formally include this decomposition
as a part of the procedure. The fem-bv-varx algorithm does not simul-
taneously estimate a transition matrix for the cluster or meta-stable state
evolution. Thus if one were to fit a Markov matrix, assuming stationarity, then
the transition matrix and Markovianity must be computed and established
a posteriori using a generator algorithm. In general, rather than calculate
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the transition matrix to determine the number of meta-stable states, we use
the aic and make no assumption of stationarity.

The fem-bv-varx [11] method simultaneously estimates the clusters (corre-
sponding to regimes) and the most likely meta-stable state transitions between
the clusters through the minimisation of an average clustering functional L of a
given time series xt. This approach assumes that the dynamics of the observed
variable of interest xt is influenced by the previousm time-lagged values of the
same variable (to describe the memory effects), some set of explicitly observed
external factors ut and an unobservable (hidden) impact variable associated
with regime transitions that strongly influences the observed variable.

Implicit in the fem-bv-varx approach is the assumption that the dynamics
is approximated by a stochastic model of the general form

xt = µt +A(t)φ1 (xt−τ, . . . , xt−mτ) + B(t)φ2 (ut) + C(t)εt . (2)

Here, Θ(t) = (µ(t),A(t),B(t),C(t)) is a vector of time dependent model pa-
rameters, εt is a stochastic variable describing the noise, φ1 (xt−τ, . . . , xt−mτ) is
some (in general) non-linear function which connects the earlier observa-
tions xt−τ, . . . , xt−mτ , φ2(ut) is an external factor function, and C(t) couples
the unobserved scales (modeled as a statistically independent and identically
distributed noise process with zero expectation) to the analysed time series.
As demonstrated by Horenko [9], time dependence of the model parameters Θ
is induced by the influence of the unresolved scales and leads to non-stationary
regime transition behaviour in many realistic systems.

The fem-bv-varx method aims to identify the time dependent optimal param-
eters Θ(t) as a convex linear combination of time independent parameters θi
for i = 1 . . . ,K with time dependent linear combination coefficients γi(t).
In the context of the fem-bv-varx, functions γi(t) are interpreted as the
probabilities that the given observation xt at time t is best explained by a
varx model with constant model parameters θi. Thus, for an a priori given
number of clusters K, fixed given time series xt and ut, and fixed maximal
time lag m, the fem-bv-varx methodology minimises the distance of the
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actual trajectory (in an appropriate metric g(xt,ut, θi)) to one of the K model
clusters at time t. This means that we are looking simultaneously for the
cluster locations (defined by the cluster probabilities γi(t), i = 1, . . . ,K) and
the time evolution of the system in the space spanned by the model clusters
defined by the parameters θi, and where Γ(t) = γ1(t),γ2(t), . . . ,γK(t) defines
the model affiliation sequence or Viterbi path.

The method considers the clustering of possibly non-stationary multidimen-
sional data xt ∈ Rd as a minimisation problem,

L(Θ, Γ) =
T∑
t=0

K∑
i=1

γi(t)g(xt,ut, θi) → min [Γ(t),Θ(t)] , (3)

subject to constraints

K∑
i=1

γi(t) = 1 for all t ∈ [0, T ] , (4)

and
γi(t) > 0 for all t ∈ [0,T] and i = 1, . . . ,K , (5)

where we want to minimise the object L. The corresponding cluster distance
functional characterises how well a given observation xt at time t is described
by a given model i with parameters θi [9]. One incorporates additional
information into the optimisation, such as some persistency assumptions of
functions in space Γ(.), and then applies a finite Galerkin time discretisation
of this infinite dimensional Hilbert space. For example, for a given observation
time series one can impose the constraint of the limited (that is bounded)
temporal variation of the underlying statistical parameters Θ(t) [8, 9].

The optimisation problem is now solved by a finite element approach [9, 10,
for algorithm details] using principal components of the eofs, as described.
The persistency constraint C bounds the persistency of the function γi via
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the norm

|γi|BV(0,T) =

T−1∑
t=0

|γi(t+ 1) − γi(t)| = ‖Dγ†i ‖1 6 C , (6)

D =


−1 1 . . . 0

0 −1 . . . 0
...

...
...

...
0 . . . −1 1

 ,

where i = 1, . . . ,K , γi = [γi(1), . . . ,γi(T)] ∈ RT , † is the transposition
operation and ‖ · ‖1 is the 1-norm. The scalar persistency parameter C
measures the maximal number of transition between the local model i and
all other models in the time interval (0, T) .

2.1 AIC: Akaike information criterion

In the context of non-stationary inference, it is appropriate to use the aic to
determine the right order parameters of the varx model, that is the memory
depth m, the number of clusters K and the optimal bv-persistency C [11, 15].
To select the proper order parameters (and the optimal functional for external
factors φ2(ut) in (2)) for a given persistency parameter value [11] the aic is
defined as

aic = −2 log Lmax + 2M , (7)

where Lmax is the maximum likelihood achievable by the model and M is the
number of free parameters. The lowest aic is preferred. The resulting optimal
Viterbi path provides a natural method for generating the climatology of
a particular cluster state sequence. Cluster states are constructed by first
assigning a model affiliation to each data point in the time series of anomalies
according to the Viterbi path sequence Γ(t). Then all anomalies for each given
cluster state assignation are averaged. The averaged state is the composite or
cluster state.



2 Methodology C240

2.2 Blocking indices

We are interested in the utility of the fem-bv-varx with regard to its ability
to identify systematic changes in the regime states of the climate system. The
dynamics of the mid-latitude sh atmosphere are characterised by the presence
of regimes represented by the sam and high-low blocking dipoles. To identify
said regime states the fem-bv-varx must be able to accurately identify sh
blocking. Meteorologists typically employ split-flow blocking indices to identify
mid-latitude blocking. Such indices are also used to assess climate general
circulation model performances [19] and to develop blocking climatologies [16].
Pook and Gibson [16] discussed in some detail the respective definitions of
sh blocking and the development of the modern blocking index used at the
Australian Bureau of Meteorology (bom), as developed by Wright [23]. This
blocking index, which we refer to as the bom index, is defined as

0.5(U25 +U30 −U40 − 2U45 −U50 +U55 +U60) > 0, (8)

where Uy represents the zonal component of the mean 500 hPa wind (five
day averaged) at latitude y. The bom index detects blocking whenever it is
positive. Large values indicate strong high and low latitude westerly winds
or that the mid-latitude westerly flow is weak. O’Kane et al. [15] considered
a related measure of sh blocking, originally developed by Tibaldi et al. [20],
which depends on mid- and high latitude geo-potential height gradients.

In this study we examine the National Center for Environmental Prediction
(ncep) and the National Center for Atmospheric Research (ncar) reanalysis
data set using 500 hPa geopotential height fields in the sh, covering the
period January 1948 through December 2009. Due to the dependence of sh
observations on satellite data, reanalysis is not considered very reliable before
about 1979. However, we choose to include an analysis of the complete data set
as we consider only large scale hemispheric features and consider reanalysis to
be a reasonable best guess. The fem-bv-varx algorithm requires continuous
data and so we use daily data over a 60 year period. This approach is different
to almost all other clustering studies which focus on the nh winter season.
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Figure 1: ncep 500 hPa 1948–2010: composite states using the bom blocking
index. Australian region (longitude sector 110◦E–210◦E) averaged over all
seasons.

We first subtract a smooth annual cycle from the data by computing the
mean annual cycle by taking the calendar average for each day. We also find
that smoothing the noisy annual cycle via a running mean has little effect on
the results.

3 Results

We calculate composites from the bom blocking index by considering all
instances where the bom index is greater than one standard deviation above
the mean to be in the (+1) state and all instances where the bom index is less
than one standard deviation below the mean to be in the (−1) state. This is
carried out for both the sh and the Australian blocking region, defined here
as the longitude sector 110◦E–210◦E (Figure 1).



3 Results C242

Figure 2: ncep 500 hPa 1948-2010: composite states using the fem-bv-varx
Viterbi paths. Australian region (longitude sector 110◦E–210◦E) averaged
over all seasons.

Although the bom index and fem-bv-varx Viterbi paths (not shown) are
similar, there are manifest differences between the bom and fem-bv-varx
composite states. Ideally, blocking composites from any method should
resemble the ‘canonical’ block. For the Australian region this typically consists
of anticyclones in the latitude band 35◦S–60◦S, most commonly in the Tasman
sea but also occurring in the Western Pacific, Great Australian Bight and
eastern Indian Ocean [1, 21]. While splitting of the basic westerly flow implies
a high-low dipole, blocking in the Australian region is typified by a larger and
more conspicuous high [22] or sequence of highs [1]. As the fem-bv-varx
method is not descriptive and makes no assumptions about the structure of
blocks there is no a priori guarantee that the cluster composites will resemble
structures that look like blocks. However, for the Australian region the fem-
bv-varx produces composites with coherent structures that are confined to
the mid-latitude jet with maxima in the locality of the Tasman sea (Figure 2).
More generally, the global fem-bv-varx composites [15, Figures 2 and 3]
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show structures immediately recognisable as coherent blocked states and
do match the features of blocking in the sh; that is a three wave blocking
structure in the sh with nodes in the dominant blocking regions [21].

In contrast, for the Australian region the bom split flow index generates
blocking composite states with anomalies across a large latitudinal band that
straddles both the subtropical and polar jets, consistent with a splitting of the
flow (Figure 1). For the global bom index composites [15, Figure 9], the three
wave structure is weak and the nodes are displaced from the regions usually
associated with persistent height anomalies in the literature [13, 18] and
observed in individual case studies [14, 21]. Figure 3 shows the pivot point in
residence length for the ncep atmospheric reanalysis data at 500 geopotential
height, marking the transition from a sh weather regime dominated by strong
mid-latitude blocking (three wave hemispheric patterns) to one in which the
sam (zonal hemispheric flow) is increasingly dominant.

4 Conclusions

The meta-stable states of the sh over the ncep reanalysis period show that
post 1978 there has been a significant decline in blocking over the summer
months and during spring. However, post 2000 there is little evidence of trends
in autumn and winter. Similar trends, consistent with the satellite period,
are also observed over the full reanalysis period, and while most significant
in summer and spring, they are also observable in winter and autumn. For
the satellite period, the fem-bv-varx metastable states are clearly sam
and a hemispheric blocking state with positive anomalies in the three sh
blocking regions. Taken over the entire reanalysis period, the fem-bv-varx
cluster states are positive and negative blocking phases. Summer averaged
transition states for both periods resemble sam. Taken as a whole, these
results indicate that there has been a fundamental change in the regime states
of the sh atmospheric circulation whereby the negative blocking pattern has
been progressively replaced over time by sam as a metastable state and that
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Figure 3: Residence length in positive (black dashed), negative (blue dashed)
and transition (red dashed) phases of a hemispheric mid-latitude blocking
state (three wave hemispheric pattern), obtained from a cluster analysis of
sh 500 geopotential height.

sam is intensifying, while blocking is in decline both in terms of occurrence
and persistency.

We showed qualitative agreement between cluster affiliation sequences (Viterbi
paths) and split-flow blocking indices commonly used in operational mete-
orology and to construct blocking climatologies. Closer inspection revealed
significant differences between the bom index and fem-bv-varx compos-
ite states, both hemispheric and for the Australian region. The bom index
composite states were found to be representative of split flow while the fem-
bv-varx composites capture localised coherent anomalies associated with
blocking. For the Australian region, the Tibaldi index and criteria states
closely match those using the bom index with positive anomalies to the south-
east of New Zealand and at the higher latitudes. fem-bv-varx composites
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were found to have positive anomalies in the mid-latitudes between Australia
and New Zealand in regions where blocks are, on average, most typically
found.

In contrast to standard clustering methods (for example, approaches related
to K-means [4], fuzzy C-Means [2], Gaussian mixture models [5] or hidden
Markov models [6]), the fem-bv-framework does not rely on (strong) a priori
probabilistic assumptions about the data. Additionally, fem-bv is a more
well posed numerical method than the standard clustering approaches since
the bv constraint on the switching process limits the number of possible
solutions that are attained as it is more robust with respect to the possibil-
ity of being trapped in the local optimum of the respective cluster quality
functional. Moreover, deployment of the adaptive finite element methods
(standard approach for a numerical solution of partial differential equations)
in the fem-bv context enables adaptive and parallelised clustering of the
very large amounts of data common in practical applications. This method
was successfully applied to identify atmospheric blocking events in the North-
ern [9] and Southern [15] Hemispheres from the slow temporal changes of the
statistical model parameters describing the dynamical interactions of geopo-
tential pressure values with some global atmospheric factors (for example
CO2 concentration, solar activity).
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