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An Ostrowski type inequality in two
dimensions using the three point rule
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Abstract

An Ostrowski Type inequality in two dimensions for double inte-
grals on a rectangle is developed. The resulting integral inequalities
are valid for the class of functions with bounded first derivatives. They
are employed to approximate the double integral by up to 6 one di-
mensional integrals and nine functions evaluations. Examples using
the resulting cubature formulae are presented.
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1 Introduction

Cubature formulae are most often evaluated as iterated one-dimensional in-
tegrals. The approach is straightforward but has some disadvantages. Two
of which are that the error estimates are unnecessarily large, since they too
rely on embedding the one-dimensional error results, and it is often diffi-
cult to discretise regions that are other than ideal. That is, regions whose
boundaries lie on coordinate lines of some orthogonal system.

In this paper we develop a three point cubature rule for two-dimensional
rectangular regions. An a priori error bound is obtained for functions whose
first partial derivatives exist and are bounded. The term “three point” is used
to draw an analogy with Newton-Cotes type rules where sampling occurs at
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the boundary and interior points. The rule presented here approximates
a two-dimensional integral via application of function evaluations and one-
dimensional integrals at the boundary and interior points. That is, up to nine
function points and six one-dimensional integrals. A parametrisation, similar
to that of [2], is employed to distinguish rule type. If the one-dimensional
integrals are not known, they themselves can be approximated to produce a
cubature rule consisting only of sampling points.An additional three point
rule, as in [2], may be subsequently used, or indeed any other desired quadra-
ture rule. (For example, the optimal rules at [4, 7]). As a result the error
bound will be larger.

The method presented here is based on Ostrowski’s integral inequality,
and as such is amenable to the production of error bounds for a variety of
norms. In addition smoother and product integrands may also be considered
as has been done for one-dimensional integrals, see for example [2, 3, 6].

2 The Ostrowski Inequality

The classical Ostrowski integral inequality in one dimension stipulates a
bound between a function evaluated at an interior point x and the average
of the function of over an interval. That is,∣∣∣∣f (x) − 1

b − a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x − a+b

2

)2
(b − a)2

]
(b − a) ‖f ′‖∞ (1)
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for all x ∈ [a, b], provided that f ′ ∈ L∞(a, b) and f : [a, b] → R is a differen-
tiable mapping on (a, b).

Here, the constant 1
4

is sharp in the sense that it cannot be replaced by
a smaller constant. We also make the observation that the smallest bound
is obtained at x = a+b

2
, resulting in the well-known mid-point inequality.

The Ostrowski result was further developed in [2], where Cerone and
Dragomir presented a 3-point inequality and showed that the tightest bound
is an average of the mid-point and trapezoidal rules. In the paper [1], Bar-
nett and Dragomir developed a two dimensional version of the Ostrowski
inequality.

In the current paper we combine the above two results and develop a
two dimensional 3-point integral inequality for functions with bounded first
derivatives. An application in the numerical integration of a two-dimensional
integral is investigated.

3 The Results
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Theorem 1 Let f : R2→ R be a differentiable mapping on [a1, b1] × [a2, b2]

and let f ′′
t1,t2 = ∂2f

∂t1∂t2
be bounded on (a1, b1) × (a2, b2) . That is,

∥∥f ′′
t1,t2

∥∥
∞ := sup

(x1,x2)∈(a1,b1)×(a2,b2)

∣∣∣∣ ∂2f

∂t1∂t2

∣∣∣∣ < ∞.

Furthermore, let xi ∈ (ai, bi) and introduce the parametrisation αi, βi defined
by

αi = (1 − γi) ai + γixi,

βi = (1 − γi) bi + γixi,

where γi ∈ [0, 1], for i = 1, 2. Then the following inequality holds∣∣∣∣∣
3∑

k=1

3∑
j=1

Ck1Cj2fjk −
3∑

j=1

(Cj1Ij2 + Cj2Ij1) +

∫ b2

a2

∫ b1

a1

f (t1, t2) dt1dt2

∣∣∣∣∣
≤
∥∥f ′′

t1,t2

∥∥
∞

4

(
1 + (2γ1 − 1)2) [(b1 − a1

2

)2

+

(
x1 − a1 + b1

2

)2
]

× (1 + (2γ2 − 1)2) [(b2 − a2

2

)2

+

(
x2 − a2 + b2

2

)2
]

, (2)

given that

(fjk) =


 f (a1, a2) f (x1, a2) f (b1, a2)

f (a1, x2) f (x1, x2) f (b1, x2)
f (a1, b2) f (x1, b2) f (b1, b2)


 , (3)
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(Cjk) =


 γ1(x1 − a1) γ2(x2 − a2)

(1 − γ1) (b1 − a1) (1 − γ2) (b2 − a2)
γ1 (b1 − x1) γ2(b2 − a2)


 , (4)

(Ijk) =



∫ b1

a1
f(t1, a2) dt1

∫ b2
a2

f(a1, t2) dt2∫ b1
a1

f(t1, x2) dt1
∫ b1

a1
f(x1, t2) dt2∫ b1

a1
f(t1, b2) dt1

∫ b1
a1

f(b1, t2) dt2


 . (5)

Proof: Define the kernel

p (x, t) =

{
t − α, t ∈ [a, x] ,
t − β, t ∈ (x, b] ,

(6)

where, as above, α = (1 − γ) a + γx, and β = (1 − γ) b + γx. Using (6) and
integrating by parts we obtain, after some simplification, the identity∫ b

a

p (x, t)F ′ (t) dt

= (1 − γ) (b − a) F (x) + γ [(x − a)F (a) + (b − x) F (b)] −
∫ b

a

F (t) dt. (7)

A two dimensional identity can be developed via repeated application
of (7). To this end, we define the mapping

pi (xi, ti) =

{
ti − αi, ai ≤ ti ≤ xi,
ti − βi, xi < ti ≤ bi,

for i = 1, 2. (8)
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Substituting p1 for p and f(t1, ·) for F (t) into (7) gives

∫ b1

a1

p1 (x1, t1)
∂f

∂t1
dt1 = (1 − γ1) (b1 − a1) f (x1, t2) + γ1 (x1 − a1) f (a1, t2)

+ γ1 (b1 − x1) f (b1, t2) −
∫ b1

a1

f (t1, t2) dt1. (9)

Employing (7) again with p2 as the kernel, F (t2) =
∫ b1

a1
p1 (x1, t1)

∂f
∂t1

dt1 as
the integrand and expanding with (9) produces the desired identity

∫ b2

a2

p2(x2, t2)F
′(t2) dt2 =

∫ b2

a2

∫ b1

a1

p2 (x2, t2) p1 (x1, t1)
∂2f

∂t1∂t2
dt1dt2

= (1 − γ2) (b2 − a2)F (x2) + γ2

[
(b2 − x2)F2 (b2) + (x2 − a2) F2 (a2)

]

−
∫ b2

a2

F2 (t2) dt2

=

3∑
k=1

3∑
j=1

Ck1Cj2fjk −
3∑

j=1

(Cj1Ij2 + Cj2Ij1) +

∫ b2

a2

∫ b1

a1

f(t1, t2) dt1dt2. (10)

Assuming that both first partial derivatives of f are bounded, we can
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simply write down the inequality

∣∣∣∣
∫ b2

a2

∫ b1

a1

p2 (x2, t2) p1 (x1, t1)
∂2f

∂t1∂t2
dt1dt2

∣∣∣∣
≤ ∥∥f ′′

t1,t2

∥∥
∞

(∫ b2

a2

|p2 (x2, t2)| dt2

)(∫ b1

a1

|p1 (x1, t1)| dt1

)
. (11)

Now, consider

G1 (x1) =

∫ b1

a1

|p1 (x1, t1)| dt1

= −
∫ α1

a1

(t1 − α1) dt1 +

∫ x1

α1

(t1 − α1) dt1

−
∫ β1

x1

(t1 − β1) dt1 +

∫ b1

β1

(t1 − β1) dt1

=
1

2

[
(α1 − a1)

2 + (x1 − α1)
2 + (β1 − x1)

2 + (b1 − β1)
2]

=
1

2

[
1 + (2γ1 − 1)2

] [(b1 − a1

2

)2

+

(
x1 − a1 + b1

2

)2
]

. (12)

Similarly, with G2 (x2) =
∫ b2

a2
|p2 (x2, t2)| dt2, we have

G2 (x) =
1

2

[
1 + (2γ2 − 1)2] [(b2 − a2

2

)2

+

(
x2 − a2 + b2

2

)2
]

. (13)
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Using (3), (4) and (5) and substituting (10), (12) and (13) into (11) will
produce the result (2) and thus the theorem is proved. ♠

The following result gives an Ostrowski type inequality for double inte-
grals. It involves double and single integrals together with a function evalu-
ation at an interior point.

Corollary 2 With the conditions as in Theorem 1, then

∣∣∣∣(b1 − a1) (b2 − a2) f (x1, x2) − (b2 − a2)

∫ b1

a1

f (t1, x2) dt1

− (b1 − a1)

∫ b2

a2

f (x1, t2) dt2 +

∫ b2

a2

∫ b1

a1

f (t1, t2) dt1dt2

∣∣∣∣
≤ ∥∥f ′′

t1,t2

∥∥
∞

[(
b1 − a1

2

)2

+

(
x1 − a1 + b1

2

)2
]

×
[(

b2 − a2

2

)2

+

(
x2 − a2 + b2

2

)2
]

. (14)

Proof: Place γ1 = γ2 = 0 into equation (2). ♠
Thus, the earlier results of [1] and [5, p.468] are reproduced as a special

case of Theorem 1. We note that unlike [1], the proof for Theorem 1 can be
easily extended to more than two dimensions.
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Different values of the parameters γ1, γ2, x1 and x2 give rise to Newton-
Cotes type inequalities for functions with bounded derivatives. For example
γ1 = γ2 = 0, x1 = (a1 + b1)/2 and x2 = (a2 + b2)/2 produces the mid-point
inequality; γ1 = γ2 = 1 a trapezoid-like inequality and γ1 = γ2 = 1/3 a
Simpson’s like inequality.

From Theorem 1 it is a simple matter to show that the tightest bound is
obtained when γ1 = γ2 = 1/2 and x1 and x2 are at their mid-points. That is
for the average of the mid-point and trapezoid inequalities.

Remark 3 Let f (t1, t2) = g (t1) g (t2) where g : [a, b] → R . If g is differen-
tiable and satisfies the condition that ‖g′‖∞ < ∞, then, for x1 = x2 = x and
γ1 = γ2 = γ, we obtain a result from Theorem 1 which may be factored to
recover the 3-point rule developed in [2], namely

∣∣∣∣
∫ b

a

g(t) dt − γ
(
(x − a)g(a) + (b − x)g(b)

)− (1 − γ)(b − a)g(x)

∣∣∣∣
≤ ‖g′‖∞

2

(
1 + (2γ − 1)2

)((b − a

2

)2

+

(
x − a + b

2

)2
)

. (15)

In general, cubature formulae are written only in terms of function eval-
uations, but Theorem 1 approximates a double integral in terms of single
integrals and function evaluations. Therefore we write down the following
corollary which eliminates the one dimensional integrals by approximating
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them using the 3-point rule in equation (15). The resulting inequality has a
coarser bound than equation (2).

Corollary 4 Let f be given as in Theorem 1. Then∣∣∣∫ b2
a2

∫ b1
a1

f (t1, t2) dt1dt2 −
∑3

k=1

∑3
j=1 Ck1Cj2fjk

∣∣∣
≤ ‖f ′′

t1,t2
‖∞

4

(
1 + (2γ1 − 1)2

) (
1 + (2γ2 − 1)2)

×
[(

b1−a1

2

)2
+
(
x1 − a1+b1

2

)2] [( b2−a2

2

)2
+
(
x2 − a2+b2

2

)2]
+ 1

2

(
1 + (2γ1 − 1)2

) [(
b1−a1

2

)2
+
(
x1 − a1+b1

2

)2]
×
{
γ2 (x2 − a2)

∥∥f ′
t1,a2

∥∥
∞ + (1 − γ2) (b2 − a2)

∥∥f ′
t1,x2

∥∥
∞

+ γ2 (b2 − x2)
∥∥f ′

t1,b2

∥∥
∞

}
+ 1

2

(
1 + (2γ2 − 1)2

) [(
b2−a2

2

)2
+
(
x2 − a2+b2

2

)2]
×
{
γ1 (x1 − a1)

∥∥f ′
a1,t2

∥∥
∞ + (1 − γ1) (b1 − a1)

∥∥f ′
x1,t2

∥∥
∞

+ γ1 (b1 − x1)
∥∥f ′

b1,t2

∥∥
∞

}

(16)

Proof: Approximating each single integral in (2) by (15) and applying the
triangle inequality produces the desired result. ♠
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Remark 5 If γ1 = γ2 = 0 and xi = ai+bi

2
, then∣∣∣∣

∫ b2

a2

∫ b1

a1

f (t1, t2) dt1dt2 − (b1 − a1) (b2 − a2) f

(
a1 + b1

2
,
a2 + b2

2

)∣∣∣∣

≤
∥∥f ′′

t1,t2

∥∥
∞

16
(b1 − a1)

2 (b2 − a2)
2 +

∥∥∥∥f ′
t1,

a2+b2
2

∥∥∥∥
∞

4
(b2 − a2) (b1 − a1)

2

+

∥∥∥∥f ′
a1+b1

2
,t2

∥∥∥∥
∞

4
(b1 − a1) (b2 − a2)

2 . (17)

4 Numerical Results

In this section the inequalities developed in Section 3 are used to approximate
the double integral∫ 1

0

∫ 1

0

1 − e−xydx dy = 0.203400400702947. (18)

This integrand was chosen because integrating once in each direction is triv-
ial. Namely,

∫ 1

0
1 − e−xy dx = y+e−y−1

y
and

∫ 1

0
1 − e−xy dy = x+e−x−1

x
, but the

double integral is not.

In Table 1, results are shown for the approximation to (18) using the rule
and bound of (2). The numerical error is much smaller than the theoretical
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Table 1: The numerical and theoretical errors in computing (18) using (2)
with x1 = x2 = 0.5 and various values of γ1, γ2.

γ1 γ2 Numerical Error Theoretical Error

0 0 1.5(-3) 6.3(-2)
1
3

1
3

5.4(-7) 1.9(-2)
0.5 0.5 4.3(-4) 1.6(-2)
1 1 6.5(-3) 6.3(-2)

one and is smallest when Simpson’s rule is applied (γ1 = γ2 = 1
3
). The

optimal theoretical bound is attained when γ1 = γ2 = 1
2
. It should be

noted that γ1 = γ2 = 0 approximates (18) with the “mid-point” rule and
employs one function evaluation (at the midpoint of the region) and two
one-dimensional integrals (along the bi-sectors). The “trapezoidal” rule uses
four sample points (the boundary corners) and four one-dimensional integrals
(along the boundary). All other values, that is γ1, γ2 ∈ (0, 1), produces a rule
that is a linear combination of the above and results in the use of nine sample
points and six one-dimensional integrals.

To approximate (18) only in terms of function evaluations we use equa-
tion (16). The results are presented in Table 2. Since (16) is an approx-
imation of (2), the results are qualitatively similar and quantitatively less
accurate than those in Table 1. Simpson’s rule (γ1 = γ2 = 1

3
, nine sample

points) is more accurate than the midpoint rule (γ1 = γ2 = 0, one sample
point) which in turn is more accurate than the trapezoidal rule (γ1 = γ2 = 1,
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Table 2: The numerical and theoretical errors in computing (18) using (16)
with x1 = x2 = 0.5 and various values of γ1, γ2.

γ1 γ2 Numerical Error Theoretical Error

0 0 1.8(-2) 4.6(-1)
1
3

1
3

9.3(-4) 2.2(-1)
0.5 0.5 1.0(-2) 1.9(-1)
1 1 4.5(-2) 3.8(-1)

four sample points). We note that the theoretical errors are symmetric about
γ1 = γ2 = 1

2
in Table 1, but this is not the case in Table 2; these properties

are easy to see by inspection of (2) and (16) respectively.

To illustrate the use of a cubature formula, we form a composite rule from
the inequality (14).

Theorem 6 Let f : [a1, b1] × [a2, b2] → R bs as in Theorem 1. Let In and
Jm be arbitrary divisions of [a1, b1] and [a2, b2], respectively, i.e.

In : a1 = ξ0 < ξ1 < · · · < ξn = b1, and Jm : a2 = τ0 < τ1 < · · · < τm = b2.
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Then we have the cubature formula∫ b2

a2

∫ b1

a1

f(t1, t2) dt1dt2 =
n−1∑
i=0

m−1∑
j=0

hiνjf(xi, yi) −
n−1∑
i=0

hi

∫ b2

a2

f(xi, t2) dt2

−
m−1∑
j=0

νj

∫ b1

a1

f(t1, yj) dt1 + R(f, In, Jm,x,y), (19)

where the remainder term R satisfies the condition

|R (f, In, Jm,x,y)| ≤
∥∥∥f ′′

t1,t2

∥∥∥
∞

×
n−1∑
i=0

m−1∑
j=0

[(
hi

2

)2

+

(
xi − ξi + ξi+1

2

)2
][(νj

2

)2

+

(
yj − τj + τj+1

2

)2
]

,

(20)

and hi = ξi+1 − ξi, νj = τj+1 − τj, xi ∈ (ξi, ξi+1), yj ∈ (τj , τj+1) for i =
0, 1, . . . , n − 1 and j = 0, 1, . . . , m − 1.

Proof: Applying Corollary 2 on the interval [ξi, ξi+1] × [τj , τj+1], summing
and using the triangle inequality produces the result. We omit the details.
♠

Remark 7 If we were to use (19) to approximate the integral∫ b2

a2

∫ b1

a1

f(t1, t2) dt1dt2
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Table 3: The numerical and theoretical errors in evaluating (18) using the
cubature rule in (19) for various values of n, m. Sampling occurs at the
mid-point of each region.

n m Numerical Error Error ratio Theoretical Error

1 1 1.5(-3) . . . 6.3(-2)
2 2 1.0(-4) 14.51 1.6(-2)
4 4 6.7(-6) 15.61 3.9(-3)
8 8 4.2(-7) 15.90 1.0(-3)
16 16 2.6(-8) 15.98 2.0(-4)
32 32 1.6(-9) 15.99 6.1(-5)
64 64 1.0 (-10) 16.00 1.5(-5)
128 128 6.6 (-12) 16.00 3.8(-6)

with a uniform grid and sampling at each mid-point, then the remainder R
is bounded by

|R (f, In, Jm,x,y)| ≤
∥∥∥f ′′

t1,t2

∥∥∥
∞

(b1 − a1)
2(b2 − a2)

2

16nm
(21)

Table 3 shows the numerical and theoretical errors in applying the mid-
point cubature rule (19) to evaluate the double integral (18) for an increasing
number of intervals. The numerical error ratio suggests that this composite
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rule has convergence

|R| ∼ O

(
1

n2m2

)
.

This contrasts with (21) which predicts a convergence rate of

|R| ≤ 1

16nm
.

It should be noted that the development of the bounds in Section 3 assumes
that the integrand is once differentiable. This condition admits a wider
class of functions than the usual bounds for Newton-Cotes rules, but the
error estimate will be more conservative if its applied, as it is here, to an
integrand that is infinitely smooth. In addition, theoretical optimality occurs
at γ1 = γ2 = 1

2
, while numerically this value seems to be γ1 = γ2 = 1

3
.

Because of the behaviour of the integrand, Simpson’s rule which is optimal
(in the Newton-Cotes sense) for the class of fourth differentiable mappings,
will be superior. The methods of Section 3 can be applied to smoother [3] as
well as weighted mappings . Work is continuing in this direction.
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[7] J.F. Traub and H. Woźniakowski. A General Theory of Optimal
Algorithms. Academic Press, 1980.

C673

http://melba.vu.edu.au/~rgmia/v1n1.html

	Introduction
	The Ostrowski Inequality
	The Results
	Numerical Results
	References

