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Abstract

We present an efficient algorithm for uncertainty quantification of
scattering cross-sections of stochastic configurations comprising multiple
two-dimensional sound-soft particles whose locations and orientations
are random. Our algorithm has two components. Firstly, we use a high
order generalised polynomial chaos approximation of the stochastic
cross-sections in the random variables that requires realisation of the
exterior sound propagation model for high order quadrature sampling
parameters. For each such realisation, we use an efficient spectrally
accurate algorithm for deterministic scattering simulations based on
solving a boundary integral equation reformulation of the acoustic
model. We present numerical results for a stochastic configuration of
particles with rough surfaces. Our numerical result demonstrate the
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high order accuracy of both components of the algorithm for simulation
of moments of the scattering cross-section of the configuration.
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1 Introduction

Quantifying scattering cross-sections of configurations measured from various
directions plays a fundamental role in several applications which span over half
a century [2, 8, and references therein]. In particular, of recent interest is the
use of such quantities in developing improved future climate models, reducing
uncertainties in long term predictions [2, p. 57–58]. In such applications,
because of the dynamic and uncertain nature of the configurations, the
locations and orientations of particles in the associated computer models
need to be taken as random variables. Consequently, parameters describing
the stochastic configurations are elements in appropriate probability spaces.
The direction dependent scattering cross-sections are random fields and their
statistical moments (such as average scattering properties) are crucial tools
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for uncertainty quantification in several applications. While electromagnetic
scattering by three dimensional configurations is of practical interest in
climate applications, quantifying scattering cross-sections for the scalar two-
dimensional (acoustic or polarized electomagnetic) counterparts of the model
is an important stepping stone for solving the full model problem.

In this article, we develop efficient tools for uncertainty quantification of
the scattering cross-section of a stochastic sound-soft acoustic configura-
tion D(ω) ⊂ R2 situated in a homogeneous medium. Here ω is an element
of Ω where (Ω,F,P) is a probability space and Ω is the set of possible out-
comes, F is a σ-algebra ofΩ, and P is the associated probability measure. Our
focus is on computing statistical moments in the scattering cross-section of
the obstacle when key properties such as the obstacle’s location or orientation
are random.

The scattering cross-section is a function of the direction from which the
incident sound originates. We assume an incident plane wave uinc(x; d̂) =

eikx·d̂ that strikes the configuration from the direction −d̂ with wavelength λ =
2π/k , where k is the wavenumber. The configuration is subjected to incident
waves from various directions. For each such direction d̂, the incident wave
induces a scattered field u(x,ω; d̂) that satisfies the Helmholtz equation,

4u(x,ω; d̂) + k2u(x,ω; d̂) = 0 , x ∈ R2 \D(ω) , (1)

the radiation condition,

lim
|x|→∞

√
|x|

[
∂u(x,ω; d̂)

∂x
− iku(x,ω; d̂)

]
= 0 , (2)

uniformly in all directions x̂ = x/|x| , and the sound soft boundary condition,

u(x,ω; d̂) = −uinc(x; d̂) , x ∈ ∂D(ω) , (3)

where ∂D(ω) denotes the random boundary of D(ω). Thus, for a given
incident direction d̂, the scattered field u(x,ω; d̂) is a random process whose
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behaviour a long way from a scatterer is described by the far field,

u∞(x̂,ω; d̂) = lim
|x|→∞

√
|x|e−ik|x|u(x,ω; d̂) , x̂ =

x

|x|
. (4)

In several applications, including climate science, an important quantity
associated with the scattered field is its intensity, which at large distances |x|
from the scatterer is [8, p. 29]

I(x; d̂) =
|u∞(x̂,ω; d̂)|2

|x|
, x̂ =

x

|x|
. (5)

Integrating the intensity over the unit circle S yields the scattering cross-
section [8, p. 12] for the incident direction d̂,

Csca(ω; d̂) =

∫
S

|u∞(x̂,ω; d̂)|2 ds(x̂) . (6)

The optical scattering cross-section of ice and dust particles (which typically
have rough surfaces) is an important parameter in climate models. Here
roughness corresponds to various bumpiness in the boundary of the particles
and does not relate to non-differentiability of the boundary parameterisation
maps. For a class of particles in climate applications, the boundary of
the particles are described through appropriately truncated Fourier series
expansions [2, and references therein].

Our goal is to find, for each incident direction d̂ ∈ S , the average value of
the scattering cross-section,

Csca(d̂) = E
[
Csca( · ; d̂)

]
=

∫
Ω

Csca(ω; d̂)dP(ω) , (7)

and the variance

var(Csca)(d̂) = E
[(
Csca( · ; d̂) − Csca(d̂)

)2]
, (8)
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in the case where the stochastic configuration D(ω) = D1(ω)∪ · · · ∪DM(ω)
is an ensemble of M disjoint particles D1(ω), . . . ,DM(ω) with fixed shape
given by a template D̂, but with random orientation and position. Thus
the random features of the configuration D(ω) are described by the ori-
entations φ1(z), . . . ,φM(z) and centres x1(z), . . . , xM(z) of D1, . . . ,DM, re-
spectively, where z(ω) = (z1(ω), . . . , zN(ω)), and z1(ω), . . . , zN(ω) are in-
dependent random variables. For convenience, we assume that the random
variables are uniformly distributed. However, for beta or normal or log-normal
distributions, only minor changes are required in our algorithm, as explain in
Section 3. In particular, the random scatterer DI(ω) is obtained by rotation
of the template scatterer D̂ counterclockwise by an angle φI(ω) and then
translation by xI(ω) for I = 1, . . . ,M.

A standard tool for uncertainty quantification is the Monte Carlo method. A
disadvantage of using the Monte Carlo method (to approximate the integrals in
the statistical moments computation with m sample points) is its slow 1/

√
m

convergence rate, which necessitates a large number of simulations even for, say,
two-digit accuracy. In this work we reduce the number of simulations required
by using high order orthogonal polynomial expansions of the scattering cross-
section, and further approximate the unknown coefficients in the expansions
using high order quadrature sampling. This approach belongs to the class of
the stochastic collocation generalised polynomial chaos (gpc) method and
is widely used for solving stochastic partial differential equations [7]. As
described by Maître and Kino [7], for a large number of random variables,
the curse of dimensionality in the stochastic collocation approach can be
treated using the adaptive sparse grid technique. Even for relatively small
numbers of random variables (as considered in this work), an efficient forward
solver plays a crucial role to simulate the associated deterministic system for
each sample collocation point.

We show in Section 4 that, even for a single fixed observation direction d̂, tens
or even hundreds of deterministic simulations are required to compute the
average scattering cross-section Csca(d̂), even using the spectrally accurate
stochastic collocation method with a few random variables. Our goal is to
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compute Csca(d̂) as a function of the observation direction d̂ and visualize
the mean and scattering cross-section across all directions covering the con-
figurations. In order to plot at one thousand incident directions, say, we need
to perform hundreds of thousands of simulations. Thus it is essential to use
an efficient deterministic scattering algorithm for the simulations.

In a recent work [6], we described a variant of the stochastic scheme for the
bistatic acoustic cross-section at a single incident direction, based on using an
iterative solver with fast multiplication using the T-matrix of each scatterer
in the configuration, and the translation addition theorem. However, for
the scattering cross-section problem considered in this work, for which we
need to consider hundreds of thousands of incident directions, the number
of simulations is so large that it is not feasible to use an iterative solver. In
contrast, in this case it is efficient to use an integral equation based forward
solver, compared to the pde based solver used previously [6].

Motivated by the large number of incident directions, we use a surface integral
representation for the scattered field. This representation readily facilitates
computation of the far field required in (6) to compute the scattering cross-
section. We solve the resulting surface integral equation using an efficient
spectral algorithm [3, 4, 5]. The high order convergence of the spectral forward
solver means that the resulting linear system has relatively few unknowns per
scatterer, so that for the small numbers of scatterers considered in this work
the discretisation matrix can be assembled in memory and its lu factorisation
computed and stored. Once the lu factorisation is computed, we can solve for
even thousands of incident directions very quickly. Thus, by using the spectral
algorithm, we substantially reduce the computation complexity impact of the
large number of incident directions in the algorithm.

In Section 2 we describe our efficient algorithm for deterministic multiple
scattering simulations. In Section 3 we describe our gpc stochastic collocation
scheme. Finally, in Section 4 we demonstrate the efficiency and accuracy
of our combined gpc and spectrally accurate boundary integral equation
algorithm with numerical results for a configuration of rough scatterers.
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2 Deterministic multiple scattering
simulations

In this section we describe our efficient algorithm for simulating the scattering
cross-section Csca(z; d̂) induced by the incident plane wave with direction d̂,
where z is a sample of the random vector z(ω). We consider the location
and orientation of the M closed and bounded scatterers D1, . . . ,DM to be
fixed. Without loss of generality, for each J = 1, . . . ,M , we assume that the
closed boundary curve ∂DJ is parametrised by a 2π-periodic map.

Due to the unbounded multiply-connected domain R2 \D(z) and our interest
in the far field (to compute the scattering cross-section), it is natural to first
start with a boundary integral representation of the scattered field:

u(x, z; d̂) =
M∑
J=1

∫
∂DJ(z)

[
∂Φ(x,y)
∂n(y)

− iηΦ(x,y)
]
ψJ(y, z; d̂)ds(y) , (9)

for x ∈ R2 \ D(z) . Here, n(y) is the unit outward normal to the bound-
ary ∂DJ(z) of DJ(z) at y and Φ(x,y) = i

4
H

(1)
0 (k|x− y|) is the fundamental

solution of the two dimensional Helmholtz equation and H(1)
0 is the Hankel

function of the first kind. Using the boundary condition (3) and the jump
relations for the double and single layer potential [3], we obtain the system
of integral equations for the unknown densities ψ1, . . . ,ψM in (9) on the
boundaries of the configuration:

ψI(x, z; d̂) +
M∑
J=1

(KIJψJ − iηSIJψJ) (x, z; d̂) = −2uinc(x; d̂) , (10)

for x ∈ ∂DI(z) and I = 1, . . . ,M . This equation has a unique solution for all
wavenumbers provided the coupling parameter η has nonzero real part. The
double and single layer operators KIJ and SIJ, with source density defined
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on ∂DJ(z) and the acoustic-potential fields observed at x ∈ ∂DI(z) , are

KIJv(x) = 2

∫
∂DJ(z)

∂Φ(x,y)
∂n(y)

v(y)ds(y) , x ∈ ∂DI(z) , (11)

and
(SIJv) (x) = 2

∫
∂DJ(z)

Φ(x,y)v(y)ds(y) , x ∈ ∂DI(z) . (12)

Once the surface densities ψ1, . . . ,ψM have been computed, the far field is [3,
equation (3.64)]

u∞(x̂, z; d̂) =
1+ i

4
√
πk

M∑
J=1

∫
∂DJ(z)

[
∂e−ikx̂·y

∂n(y)
− iηe−ikx̂·y

]
φJ(y, z; d̂)ds(y) .

(13)
To numerically evaluate the integral on the unit circle in (6) we use the
rectangle rule, with quadrature points x̂j and weights µj,

x̂j = (cosφj, sinφj) , φj =
2πj

m− 1
, µj =

2π

m
, j = 0, . . . ,m− 1 .

Due to the integration on the periodic domain, this rule has high order
accuracy for smooth integrands. Thus our approximation to the scattering
cross-section of the configuration is

Csca(z; d̂) =

m−1∑
j=0

µj

∣∣∣u∞(x̂j, z; d̂)
∣∣∣2 .

Next we focus on efficient computation of the unknown densities in (13) that
requires efficient discretisation of the M-coupled surface boundary integral
equations (10).

The first ingredient in our efficient scheme for simulation of the scattering
cross-section is the parametrisation of each boundary ∂DJ(z) using a mapping

qJ(z) : S→ ∂DJ(z) . (14)
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This parametrisation facilitates the use of a pseudospectral Galerkin discreti-
sation of the integral equation (10) using the trial space of trigonometric
polynomials of degree, say, at most L ′. High order representation of the sur-
face densities and corresponding high order approximation of the transplanted
integral operators on the unit circle S means that relatively few unknowns
are needed in the discretisation to obtain a specific accuracy in the solution.

Discretisation of the system (10) leads to the block linear system

vI +

M∑
J=1

(KIJ − iηSIJ)vJ = bI(d̂) , for I = 1, . . . ,M , (15)

where bI(d̂) is the discretisation of uinc( · , z; d̂)|∂DI(z) , and KIJ, SIJ are spec-
trally accurate discretisations of KIJ and SIJ, respectively. Crucially, the
matrix in the left hand side of (15) is independent of the incident direction d̂.
Thus, to represent Csca(z; d̂) for many incident directions d̂ = d̂1, . . . , d̂K, we
need to solve many linear systems with the same matrix but many right hand
sides derived from d̂1, . . . , d̂K. Thus the second step in our efficient simulation
algorithm is to assemble the matrix and compute its lu factorisation. Using
the lu factorisation these linear systems are solved very efficiently in almost
the same cpu time as the simulation for a single incident direction. Three
dimensional counterparts of such efficient discretisations are described in our
earlier work [4, 5].

3 Uncertainty quantification

In this section we describe our high order generalised polynomial chaos
method for uncertainty quantification of the stochastic cross-section. We
first describe the procedure in the case that our scattering configuration is
described by a single uniformly distributed random variable z with mean
zero and variance σ2, that is z ∼ U(−

√
3σ,
√
3σ) with probability density

function ρ(z) = 1

2
√
3σ
χ(−
√
3σ,
√
3σ)(z) and associated probability measure P. In
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case of beta or normal (or log-normal) distributions, the Legendre polynomial
based details below are replaced with similar derivations using Jacobi or
Hermite polynomials, respectively [7].

Let Pn denote the Legendre polynomial of degree n that satisfies the recurrence
relation [1, equation (22.7.10)],

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x) , (16)

for real x, with P0(x) = 0 , P1(x) = x . The Legendre polynomials are
orthogonal with respect to the standard inner product on the interval [−1, 1] ,
satisfying [1, equation (22.2.10)]

2n+ 1

2

∫ 1
−1

Pn(x)Pm(x)dx = δm,n . (17)

Using a change of variables z =
√
3σx we define

P̂n(z) = Pn

(
z√
3σ

)
= Pn(x) . (18)

Therefore,

E
[
P̂n( · )P̂m( · )

]
:=

∫√3σ
−
√
3σ

P̂n(z)P̂m(z)dP(z) =
1

2n+ 1
δm,n . (19)

Thus the polynomials P̂n are orthogonal with respect to the Radon–Nikodym
derivative dP(z) = ρ(z)dz . Equation (19) motivates the inner product for
square integrable functions f,g with respect to the measure dP(z),

〈f,g〉 = E [f( · )g( · )] =
∫√3σ
−
√
3σ

f(z)g(z)
1

2
√
3σ
dz

=

∫ 1
−1

f
(√
3σx

)
g
(√
3σx

) 1
2
dx . (20)
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In practice we need the discrete approximation to the inner product (20),

〈f,g〉L =
L+1∑
m=1

νmf
(√
3σxm

)
g
(√
3σxm

)
, (21)

obtained by evaluation of the integral in (20) using the Gauss–Legendre
rule [1, equation (25.4.29)]. The knots xm for m = 1, . . . ,L+ 1 are the zeros
of PL+1 , whilst the weights (incorporating the 1/2 factor due to the probability
measure on [−1, 1]) are

νm =
1

(L+ 1)[PL(xm) − xmPL+1(xm)]
, m = 1, . . . ,L+ 1 .

We are now able to compute the discrete orthogonal projection of the scattering
coefficient Csca(z; d̂) onto the space VL = span{P̂0, . . . , P̂L} , for some L ∈ N ,
using the discrete inner product (21) on VL. In particular,

Csca(z; d̂) ≈
L∑
l=0

Ĉsca,l(d̂)Pl(z) , (22)

where, using (18), (19) and (21),

Ĉsca,l(d̂) = (2l+ 1)〈Csca( · ; d̂), P̂l( · )〉L

= (2l+ 1)

L+1∑
m=1

νmCsca(
√
3σxm; d̂)Pl(xm) .

As described in Section 1, we parametrise the stochastic features in our
model with M particles by the random vector z = (z1, . . . , zN) ∈ RN , with
associated measure PN(z), where N 6 3M . We assume that the N ran-
dom variables z1, . . . , zN have uniform distribution with mean zero and vari-
ances σ21, . . . ,σ2N, respectively. Analogously to the univariate case above, we
introduce the tensor product polynomial

P̂l(z) = P̂l1(z1) · · · P̂lN(zN) ,
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where l = (l1, . . . , lN) . Using a similar change of variables to above, we obtain
the tensor product analogue of (18),

P̂l(z) = Pl(x) = Pl1(x1) · · ·PlN(xN) ,

where x = (x1, . . . , xN) and z = (z1, . . . , zN) = (
√
3σ1x1, . . . ,

√
3σNxN) . The

polynomials P̂l are easily seen to be orthogonal with respect to the mea-
sure PN(z). Indeed, with respect to the tensor product analogue of the inner
product in (20),

〈P̂n( · ), P̂m( · )〉 =

{
1

(2n1+1)
· · · 1

(2nN+1)
, when n = m ,

0 , otherwise.
(23)

Using the change of variables and the tensor product version of the discrete
inner product (21), we obtain our spectrally accurate approximation to the
scattering cross- section of the stochastic configuration:

Csca(z; d̂) ≈ Csca,L(z; d̂) :=
∑
|l|∞6L

Ĉsca,l(d̂)Pl(z) , (24)

where |l|∞ = max{l1, . . . , lN} , and

Ĉsca,l(d̂) = (2l1 + 1) · · · (2lN + 1)
∑

|l|∞6L+1

νm1
· · ·νmN

Csca(zm; d̂)Pl(xm) ,

and zm = (
√
3σ1xm1

, . . . ,
√
3σNxmN

) , xm = (xm1
, . . . , xmN

) . Using the gpc
coefficients in (24) we compute approximations to the mean value and variance
as

Csca(d̂) ≈ Ĉsca,0(d̂) , var(Csca)(d̂) ≈
L+1∑

|l|∞=1

(2l1+1) · · · (2lN+1)
∣∣∣Ĉsca,l(d̂)

∣∣∣2 .
In practice, if the number of random variablesN is greater than or equal to five,
then it is important to replace |l|∞ in the above algorithm with |l| =

∑N
i=1 li

and use a sparse grid version of the quadrature rule to tackle the curse of
stochastic dimension [7].
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4 Numerical results

We present numerical results for a stochastic configuration comprising two
rough particles (with rough boundary; see Figure 1) that are rotations and
translations of a template particle of diameter five wavelengths. The ori-
entations φ1 and φ2 of the two particles are given by independent random
variables with uniform distribution U(−

√
3/10,

√
3/10) and the x-coordinate

of the second particle is given by an independent random variable with uni-
form distribution U(−

√
3/20,

√
3/20) . The first particle is fixed and so the

random x-coordinate of the second scatterer determines the separation of the
two particles. Thus the random parameter vector describing the configuration
is in the probability space (R3,F3,P3) . The computed scattering cross-section
is invariant under fixed shifts of the configuration and hence we are effectively
quantifying the uncertainty in the scattering cross-section with respect to the
random orientation and separation of the particles.

In Figure 1 we illustrate the mean configuration, in which the first particle
has centre (−2, 0) and the second particle has centre (2, 0) , and visualise the
total field u(x,ω; d̂) + uinc(x; d̂) induced by scattering of an incident plane
wave with direction d̂ = (0, 1) .

We used our efficient hybrid gpc and spectral integral equation algorithm
to compute the approximate mean scattering cross-section of the random
configuration and its variance for maximum polynomial degree L between
5 and 15. In Figure 2 we visualise the approximate mean scattering cross-
section, computed with maximum polynomial degree L = 5 , as a function of
incident direction d̂(θ) = (cos θ, sin θ) in polar coordinates. The uncertainty
is visualised by shading the region between the curves

Csca,L(d̂) −

√
var(Csca,L)(d̂) , Csca,L(d̂) +

√
var(Csca,L)(d̂) .

For this problem, the exact value of the mean scattering cross-section is not
known. Hence, following standard practice, we use our gpc approximation
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Figure 1: Visualisation of the mean configuration of the scatterers and the
total field induced by an incident plane wave with direction (0, 1) .

obtained with Legendre polynomial degree 15 as a reference solution and
approximate the error using gpc polynomials of degree L by

errorL =
∥∥∥Csca,L(d̂) − Csca,15(d̂)

∥∥∥∞ .

In practice we approximate the maximum norm error by sampling at one
thousand equally spaced points on the unit circle. Because we have three
random variables, we require (L + 1)3 simulations to compute our gpc ap-
proximation with polynomials of maximum degree L. In Figure 3 we plot the
error against the number of simulations for gpc and Monte Carlo. For this
experiment the gpc method with L = 5 (and hence 216 simulations) gives
smaller error than the Monte Carlo method even with 50 160 simulations.
Finally, in Table 1 we show the efficiency of our spectrally accurate (in space
and in random variable) method compared with the Monte Carlo method
by presenting cpu times required for the uncertainty quantification using a
compute node with two hexacore 2.93 GHz Intel Xeon X5670 processors.
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Figure 2: Visualisation of the mean scattering cross-section Csca,L(d̂) from
various directions d̂, of the random configuration (solid line) computed
using gpc with L = 5 with uncertainty indicated by the shaded region that
marks ± one standard deviation.
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Table 1: cpu time for parallel computation using twelve cores.

Method Number of simulations Error cpu time
gpc (L = 5) 216 5.4× 10−5 5.1 min
Monte Carlo 50 160 1.9× 10−3 19.1 hour

Figure 3: Error in the mean scattering cross-section Csca,L(d̂) computed
using gpc with (L+ 1)3 simulations the Monte Carlo method.
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