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Fast iterative solvers for boundary value
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Abstract

Boundary value problems on local spherical regions arise naturally in
geophysics and oceanography when scientists model a physical quantity
on large scales. Meshless methods using radial basis functions provide
a simple way to construct numerical solutions with high accuracy.
However, the linear systems arising from these methods are usually ill-
conditioned, which poses a challenge for iterative solvers. We construct
preconditioners based on an additive Schwarz method to accelerate the
solution process for solving boundary value problems on local spherical
regions.
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1 Introduction

Let Ω be a simply connected local region with a smooth boundary ∂Ω on the
unit sphere Sn in Rn+1 . Let L be a differential operator, and let f and g be
two given functions in certain Sobolev spaces. We assume that the boundary
value problem

Lu = f on Ω ,
u = g on ∂Ω , (1)

has a unique solution and that L is self-adjoint.

Such boundary value problems arise naturally in geophysics and oceanography
when scientists model a physical quantity on large scales. In these situations,
the curvature of the Earth cannot be ignored, and a boundary value problem
has to be formulated on a local region of the unit sphere. For example,
the study of planetary scale oceanographic flows in which oceanic eddies
interact with topography such as ridges and land masses, or evolve in a closed
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basin, leads to the study of point vortices on the surface of the sphere with
boundaries [2, 6]. Such vortex motions are described as a Dirichlet problem
on a subdomain of the sphere with the Laplace–Beltrami operator [1, 3].

Using a meshless method, we construct numerical solutions to (1) based on
spherical radial basis functions (rbfs). To accelerate the solution process,
we introduce a preconditioner based on the additive Schwarz method. In
previous studies we considered pseudo-differential equations defined on the
whole sphere [4, 7], in this article we focus on boundary value problems
defined on local spherical regions.

2 Spherical RBFs

We assume that Φ : Sn × Sn → R is a strictly positive definite kernel on Sn,
that is

• Φ is continuous,

• Φ(x,y) = Φ(y,x) for all x,y ∈ Sn ,

• For any set of distinct points X = {x1, . . . ,xK} ⊂ Sn , the matrix [Φ(xp,xq)]
is strictly positive definite.

For a fixed point xp ∈ Sn , the function Φp(x) := Φ(xp,x) is called a spherical
rbf.

For mathematical analysis, sometimes it is convenient to expand the kernel Φ
into a series of spherical harmonics [5]. The space of spherical harmonics
of degree ` on Sn, denoted by H` , has an orthonormal basis {Y`,k : k =
1, . . . ,N(n, `)} , where

N(n, 0) = 1 and N(n, `) =
(2`+ n− 1)Γ(`+ n− 1)

Γ(`+ 1)Γ(n)
for ` > 1 .
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The kernel Φ is expanded as

Φ(x,y) =
∞∑
`=0

N(n,`)∑
k=1

φ̂(`)Y`,k(x)Y`,k(y) , x,y ,∈ Sn ,

where {φ̂(`)}∞̀=0 is a sequence of positive real numbers such that
∑∞̀

=0N(n, `)φ̂(`)
is finite.

Every function f ∈ L2(Sn) is also expanded in terms of spherical harmonics,

f =

∞∑
`=0

N(n,`)∑
k=1

f̂`,kY`,k , f̂`,k =

∫
Sn
fY`,k dS .

We define the inner product

〈f,g〉Φ :=

∞∑
`=0

1

φ̂(`)

N(n,`)∑
k=0

f̂`,kĝ`,k ,

and the associated norm ‖f‖Φ =
√
〈f, f〉Φ . Let

NΦ := {f ∈ L2(Sn) : ‖f‖Φ <∞} .

It can be shown that NΦ is a reproducing kernel Hilbert space. For all f ∈ NΦ ,

〈f,Φ(·,x)〉Φ = f(x) for all x ∈ Sn . (2)

So Φ is the reproducing kernel of NΦ .

3 A collocation method

Let X(I) = {x1,x2, . . . ,xM} be a set of scattered points in Ω and let X(B) =
{xM+1,xM+2, . . . ,xN} be a set of scattered points on ∂Ω . The uniformity
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of the point set X(I) is measured by its mesh norm hX and its separation
radius qX,

hX := sup
y∈Ω

min
x∈X

cos−1(x · y) and qX :=
1

2
min

x,y∈Ω ,x 6=y
cos−1(x · y) .

The angle cos−1(x · y) is the geodesic distance between two points x and y
on the sphere.

Let

ϕj =

{
LyΦ(·,xj) for j = 1, . . . ,M ,
Φ(·,xj) for j =M+ 1, . . . ,N .

Here Lx (or Ly) denotes the operator L acting on the first (or second) variable
of the kernel Φ(x,y) . We restrict ourselves to a class of rotational invariant
operators such that LxΦ(x,y) = LyΦ(x,y) . This property holds for many
operators frequently seen in practice, for example, the Laplace–Beltrami
operator, the weakly-singular integral operator and the hypersingular integral
operator [7]. Due to this assumption we simply write LΦ in place of LxΦ

or LyΦ .

Let
V = span{ϕ1, . . . ,ϕN} . (3)

The collocation method to solve (1) consists of finding a uX ∈ V that solves
the collocation equations

LuX(xk) = f(xk) for k = 1, . . . ,M , (4a)
uX(xk) = g(xk) for k =M+ 1, . . . ,N . (4b)

In view of (1) and (3) we deduce from (4a)–(4b) that

uX =

N∑
j=1

cjϕj ,
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where the coefficients cj for j = 1, . . . ,N are determined from

M∑
j=1

cjLLΦ(xk,xj) +
N∑

j=M+1

cjLΦ(xk,xj) = f(xk) , k = 1, . . . ,M ,

M∑
j=1

cjLΦ(xk,xj) +
N∑

j=M+1

cjΦ(xk,xj) = g(xk) , k =M+ 1, . . . ,N .

The above linear system in matrix form is

Ac = b , (5)

where
A =

[
BLL BL
BL B

]
,

with

BLL = [LLΦ(xk,xj)]xk,xj∈X(I) ,

BL = [LΦ(xk,xj)]xk∈X(I),xj∈X(B) ,

B = [Φ(xk,xj)]xk,xj∈X(B) ,

and
b = [f(x1) . . . f(xM) , g(xM+1) . . .g(xN)]T .

The matrix A is symmetric positive definite, so an iterative method is used to
solve for c. The resulting linear system of equations is often ill-conditioned,
especially when the minimum separation radius qX is small. Before intro-
ducing fast iterative solvers for the linear system, we rewrite our collocation
equations (4a)–(4b) as a variational problem.

Lemma 1. Equations (4a)–(4b) are equivalent to

〈uX,ϕj〉Φ = 〈u,ϕj〉Φ for j = 1, . . . ,N . (6)
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Proof: For j = 1, . . . ,M , using (2),

〈uX,ϕj〉Φ = 〈uX,LΦ(·,xj)〉Φ = 〈LuX,Φ(·,xj)〉Φ = LuX(xj)

and〈
L−1f,ϕj

〉
Φ
=
〈
f,L−1ϕj

〉
Φ
=
〈
f,L−1LΦ(·,xj)

〉
Φ
= 〈f,Φ(·,xj)〉Φ = f(xj) ,

so we rewrite (4a) as

〈uX,ϕj〉Φ =
〈
L−1f,ϕj

〉
Φ
= 〈u,ϕj〉Φ . (7)

Similarly, for j = M + 1, . . . ,N , since 〈uX,ϕj〉Φ = 〈uX,Φ(·,xj)〉Φ = uX(xj)
and 〈g,ϕj〉Φ = 〈g,Φ(·,xj)〉Φ = g(xj) we rewrite (4b) as

〈uX,ϕj〉Φ = 〈g,ϕj〉Φ = 〈u,ϕj〉Φ . (8)

♠
This lemma enables us to define the additive Schwarz method in the next
section.

4 Additive Schwarz method

A framework for the additive Schwarz method applied to elliptic pdes defined
on the whole sphere without boundary conditions was discussed by Le Gia
et al. [4]. In this section we propose a more general framework for boundary
value problems on a subdomain of the unit sphere.

The additive Schwarz method provides a fast solution to equations (4a)-
(4b) by solving, in parallel, problems of smaller size. Let the space V be
decomposed as

V = V0 + V1 + · · ·+ VJ + VJ+1 + · · ·+ VK , (9)
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where we require that Vk ⊂ span{ϕ1, . . . ,ϕM} for k = 0, . . . , J , and Vk ⊂
span{ϕM+1, . . . ,ϕN} for k = J+ 1, . . . ,K .

For k = 0, . . . ,K let Pk : V → Vk be defined by

〈Pkw, ξ〉Φ = 〈w, ξ〉Φ for all ξ ∈ Vk and for all w ∈ V .

Let P = P0 + P1 + · · · + PK . The additive Schwarz method applied to the
collocation equations involves solving

PuX = h =

K∑
k=0

hk , (10)

where for k = 0, . . . , J ,

〈hk, ξ〉Φ =
〈
L−1f, ξ

〉
Φ

for all ξ ∈ Vk ,

and for k = J+ 1, . . . ,K ,

〈hk, ξ〉Φ = 〈g, ξ〉Φ for all ξ ∈ Vk .

Lemma 2. The approximate solution uX is a solution of the variational
equation (6) if and only if it is a solution of (10).

Proof: Suppose uX solves (6). Then using (7) for k = 0, . . . , J ,

〈PkuX, ξ〉Φ = 〈uX, ξ〉Φ =
〈
L−1f, ξ

〉
Φ
= 〈hk, ξ〉Φ for all ξ ∈ Vk .

So, PkuX = hk for k = 0, . . . , J . Similarly, for k = J+ 1, . . . ,K , and using (8),

〈PkuX,ψ〉Φ = 〈uX,ψ〉Φ = 〈g,ψ〉Φ = 〈hk,ψ〉Φ for all ψ ∈ Vk .

Hence

PuX =

K∑
k=0

PkuX =

K∑
k=0

hk = h ,
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that is, uX satisfies (10). Conversely, suppose uX solves (10). For j = 1, . . . ,N ,

〈uX,ϕj〉Φ =
〈
P−1h,ϕj

〉
Φ
=
〈
h,P−1ϕj

〉
Φ

=

K∑
k=0

〈
hk,P−1ϕj

〉
Φ
=

K∑
k=0

〈
hk,PkP−1ϕj

〉
Φ

=

J∑
k=0

〈
L−1f,PkP−1ϕj

〉
Φ
+

K∑
k=J+1

〈
g,PkP−1ϕj

〉
Φ

=

K∑
k=0

〈
u,PkP−1ϕj

〉
Φ
=

〈
u,

K∑
k=0

PkP
−1ϕj

〉
Φ

= 〈u,ϕj〉Φ .

In other words, uX solves (6). ♠

To put the abstract framework of the additive Schwarz method into practice,
we need to construct a concrete algorithm to decompose the space V appro-
priately. The decomposition is defined from decompositions of the sets of
collocation points X(I) and X(B). The set X(I) is decomposed by the following
algorithm.

1. Put Ω in a bounding box E = [Lmin,Lmax]× [lmin, lmax] in spherical or
geographical coordinates.

2. Divide the box E into an m× n grid for some given positive integers
m and n.

3. Enumerate the cells of the grid from 1 to J := mn .

4. Let Xj := X(I) ∩ cell(j) for j = 1, . . . , J .

5. From each Xj we choose one point which is closest to the centre of cell(j)
to form the set X0 .

The set X(B) ⊂ ∂Ω of boundary points is similarly divided into K− J subsets.
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Figure 1: Bounding box of Australia and its decomposition into 15 cells
(subdomains). The red dots form the set Ω and the grey dotted lines indicate
the boundaries of the 15 cells.

To illustrate the algorithm, let Ω be the interior of Australia; see Figure 1.
Firstly, the domain Ω is put into a bounding box E = [110◦E, 160◦E] ×
[10◦S, 40◦S] , using geographical coordinates. Then E is sub-divided into
3 × 5 = 15 cells. The points inside the jth cell form the subset Xj, for
j = 1, . . . , 15 . From each subset Xj, we choose one point which is closest to
the centre of cell(j) to form the set X0.

Given a partition of interior points X(I) =
⋃J
j=0 Xj , we define

Vj := span{ϕm = LΦ(·,xm) : xm ∈ Xj} for j = 0, . . . , J .

Similarly, for the partition of the boundary points X(B) =
⋃K
k=J+1 Xk , we
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define

Vk := span{ϕm = Φ(·,xm) : xm ∈ Xk} , k = J+ 1, . . . ,K .

The additive Schwarz operator P is now a preconditioned solution operator.
In terms of matrix equations,

P =MA =

[
M1 0

0 M2

] [
BLL BL
BL B

]
.

In practice, we need to compute the action of M−1 on a residual r ∈ V . This
consists of the solution of independent problems on each of the subspaces
involved in the decomposition. The process is summarised in the following
steps.

1. Correction of the global coarse set X0; find u0 ∈ V0 satisfying

〈u0, ξ〉Φ = 〈r, ξ〉Φ for all ξ ∈ V0 .

2. Corrections of the local interior sets Xj for j = 1, . . . , J ; find uj ∈ Vj
satisfying

〈uj, ξ〉Φ = 〈r, ξ〉Φ for all ξ ∈ Vj .

3. Corrections of the local boundary sets Xk for k = J + 1, . . . ,K ; find
uk ∈ Vk satisfying

〈uk,ψ〉Φ = 〈r,ψ〉Φ for all ψ ∈ Vk .

4. The residual in the conjugate gradient is preconditioned by

M−1r :=

J∑
j=0

uj +

K∑
k=J+1

uk .
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5 Numerical experiments

Let us consider the boundary value problem

−∆∗u = f in Ω ,
u = g in ∂Ω . (11)

Here ∆∗ is the Laplace–Beltrami operator defined on the sphere S2 in R3. We
choose f and g so that the exact solution is

u(θ,φ) = sin θ cosφ+[2 sin(2θ) − sin(4θ)] cos(3φ) , θ ∈ [0,π] ,φ ∈ [0, 2π) .

The rbf used in the experiments is Φ(x,y) = ρ
(√
2− 2x · y

)
where ρ(r) =

(35r2 + 18r + 3)(1 − r)6+ . The point sets are taken from magsat satellite
data restricted to Ω, where Ω is some local region of the Earth. In the first
experiment we solve an academic problem on Ω = Ω1 = [110◦E, 160◦E] ×
[10◦S, 40◦S] in geographical coordinates. In the second experiment we solve a
more practical problem with Ω = Ω2 being the interior of Australia (as in
Figure 1).

We solve the matrix equation (5) using the conjugate gradient method with a
relative tolerance of 10−7, that is the stopping criterion is

‖Ac(m) − b‖`2
‖b‖`2

6 10−7 .

The conjugate gradient method is considered non-convergent when the number
of iterations exceeds 20N, where N×N is the dimension of the matrix A.

As is seen from the numerical results presented in Table 1, 2 and 3, the Schwarz
preconditioner significantly improves the cpu time (measured in seconds)
and reduces the number of iterations required for the conjugate gradient (cg)
method. For the first experiment involving Ω1, the unpreconditioned cg
method applied to the problem is not convergent. For both examples, since
the number of collocation points on the boundary X(B) is rather small, we did
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Table 1: Numerical results for the boundary value problem (11) defined on Ω1

using the preconditioned cg. The unpreconditioned cg does not converge in
this example.

N J λmin(P) λmax(P) κ(P) cpu iter
10914 40 4.4e−3 8.80 2.0e+3 115 221

10914 50 4.4e−3 9.88 2.2e+3 115 235

10914 60 4.4e−3 10.96 2.5e+3 112 246

10914 70 5.2e−3 11.56 2.2e+3 95 236

10914 80 5.2e−3 12.42 2.4e+3 97 239

10914 90 5.0e−3 13.29 2.7e+3 107 241

12425 30 3.5e−3 7.70 2.2e+3 147 233

12425 40 3.9e−3 8.81 2.3e+3 160 238

12425 50 3.8e−3 9.91 2.6e+3 164 243

12425 60 3.7e−3 10.99 2.9e+3 166 262

12425 70 4.7e−3 11.60 2.5e+3 143 241

12425 80 4.6e−3 12.48 2.7e+3 147 254

12425 90 4.6e−3 13.33 2.9e+3 143 251

13739 40 3.6e−3 8.82 2.5e+3 170 233

13739 50 3.5e−3 9.94 2.8e+3 155 243

13739 60 3.4e−3 11.00 3.2e+3 156 270

13739 70 4.5e−3 11.63 2.6e+3 127 238

13739 80 4.4e−3 12.51 2.8e+3 126 252

13739 90 4.3e−3 13.36 3.1e+3 115 262

not decompose the space span{ϕM+1, . . . ,ϕN} and hence K = J + 1 in both
cases. The condition number κ(P) of the additive Schwarz operator P seems
to be fairly independent of the number of subdomains J.
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Table 2: Numerical results for (11) defined on Ω2 using preconditioned cg.

N J λmin(P) λmax(P) κ(P) cpu iter
1493 10 1.2e−4 6.64 5.4e+4 11 497

1493 12 1.3e−4 6.78 5.3e+4 11 515

1493 14 1.3e−4 7.63 6.0e+4 10 527

1493 15 1.3e−4 7.42 5.5e+4 10 541

1493 16 1.3e−4 7.54 5.7e+4 10 537

1493 20 1.4e−4 8.19 5.9e+4 10 561

2026 10 9.1e−5 6.65 7.3e+4 23 560

2026 12 9.3e−5 6.81 7.3e+4 23 593

2026 14 9.5e−5 7.69 8.1e+4 20 617

2026 15 9.8e−5 7.44 7.6e+4 21 625

2026 16 9.7e−5 7.53 7.7e+4 21 621

2026 20 1.0e−4 8.18 8.0e+4 19 620

4054 10 3.1e−5 6.76 2.2e+5 228 1181

4054 12 3.2e−5 6.91 2.2e+5 235 1265

4054 14 3.3e−5 7.81 2.4e+5 185 1295

4054 15 3.3e−5 7.55 2.3e+5 189 1259

4054 16 3.3e−5 7.66 2.3e+5 194 1316

4054 20 3.4e−5 8.32 2.5e+5 175 1388

Table 3: Numerical results for (11) defined on Ω2 using unpreconditioned cg.

N λmin(A) λmax(A) κ(A) cpu iter
1493 0.39e−5 0.29e+7 0.73e+12 26 14846

2026 0.71e−5 0.40e+7 0.56e+12 48 14763

4054 0.42e−6 0.78e+7 0.18e+14 1017 71685
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6 Conclusion

We suggested a collocation method with rbfs for a boundary value problem
in a local region on a sphere. The method is designed in such a way that the
resulting matrix is symmetric and positive definite. (The method is sometimes
called the symmetric collocation method in the rbf literature.) However, as
is well known, the matrix is ill-conditioned. We provided a remedy by using
additive Schwarz preconditioners. The use of a symmetric collocation method
requires that the preconditioner be designed properly so that the resulting
system is still equivalent to the original problem. Lemma 2, which justifies
this equivalence, can be extended to any subdomain of a general Riemannian
manifold equipped with a reproducing Hilbert space structure.

We carried out numerical experiments on a practical domain (namely, the
interior of the Australian continent) to support our theory. The numerical
results showed that the rbf collocation method with a preconditioned conju-
gate gradient method is very competitive for solving boundary value problems
on local spherical regions.
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