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Abstract

We propose a multiscale approximation method for constructing
numerical solutions to elliptic partial differential equations on a bounded
domain. The approximate solution is constructed in a multi-level
fashion, with each level using compactly supported radial basis functions
on an increasingly fine mesh. Numerical experiments support the
theoretical results.
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1 Introduction

Radial basis functions (rbf) are increasingly important in the area of ap-
proximation theory. For solving partial differential equations (pde) using
rbf, meshless collocation methods [6, 4] are more often used than Galerkin
methods [10, 11]. Two excellent recent books covering practical and theoreti-
cal issues are by Fasshauer [4] and Wendland [12]. A function Φ : Rd → R
is said to be radial if there exists a function φ : [0,∞) → R such that
Φ(x) = φ(‖x‖2) for all x ∈ Rd , where ‖ · ‖2 denotes the usual Euclidean
norm in Rd. In this case, we define an rbf for a given centre xi ∈ Rd as

Φi(x) = φ(‖x − xi‖2) .

A practical issue concerns the scale factor to use for the rbf [8, 5]. A small
scale leads to a sparse and consequently well conditioned linear system, but
at the price of the approximation power. Conversely, a large scale has better
approximation power, but at the price of a poorly conditioned linear system.

The multiscale algorithms proposed in this article are constructed over multiple
levels. The residual of the current stage is the target function for the next
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stage. Later stages use, as basis functions, rbf with smaller support and
more closely spaced centres.

Le Gia et al. [7] gave an analysis of multiscale algorithms for rbf collocation
for a sphere. The extension to a bounded domain changes the analysis
significantly as boundary effects now need to be considered. The sufficient
conditions for convergence, presented here, are the main contribution of this
article and are significant. A similar algorithm was studied by Fasshauer [4],
although numerical experiments only showed limited convergence. The theory
presented here shows that this limited convergence was due to the parameter
choices. In contrast, our numerical experiments converge at every level.
Numerical experiments with multiscale algorithms with compactly supported
rbf for elliptic pde were also presented by Chen et al. [2], although without
any theoretical results.

In the next section we provide the concepts involved in our multiscale algorithm
and provide necessary background material regarding point sets and function
theory. Section 3 deals with the symmetric collocation algorithm and Section 4
provides numerical experiments to test the theoretical results.

2 Preliminaries

We use (scaled) compactly supported rbf to construct multiscale approximate
solutions to pde, that is, we form the solution over multiple levels. We work
with a given domain Ω ⊆ Rd .

At each level we have a finite point set X ⊆ Ω . We define the mesh norm as

hX,Ω := sup
x∈Ω

min
xj∈X
‖x − xj‖2 ,

which is a measure of the uniformity of the points in X with respect to Ω. At
each level i we denote the mesh norm by hi.
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For a given domainΩ ⊆ Rd , with a given k ∈ N0 and 1 6 p <∞ , the Sobolev
space Wk

p(Ω) consist of all u with weak derivatives Dαu ∈ Lp(Ω) , |α| 6 k .
The semi-norms and norms are defined as

|u|Wkp(Ω) =

∑
|α|=k

‖Dαu‖pLp(Ω)

1/p

, ‖u‖Wkp(Ω) =

∑
|α|6k

‖Dαu‖pLp(Ω)

1/p

.

For p = ∞ these definitions become

|u|Wk∞(Ω) = sup
|α|=k

‖Dαu‖L∞(Ω) , ‖u‖Wk∞(Ω) = sup
|α|6k
‖Dαu‖L∞(Ω) .

For the case p = 2 we write Wk
2 (Ω) = Hk(Ω) .

The functions that we are concerned with are defined on a bounded domain Ω
with a Lipschitz boundary. As a result, there is an extension operator
for functions defined in Sobolev spaces which is presented in the following
lemma [1, Theorem 1.4.5]. Further details were provided by Stein [9].

Lemma 1. Suppose Ω ⊆ Rd has a Lipschitz boundary. Then there is an
extension mapping E : Hτ(Ω) → Hτ(Rd) defined for all non-negative integers τ
satisfying Ev|Ω = v for all v ∈ Hτ(Ω) and

‖Ev‖Hτ(Rd) 6 C‖v‖Hτ(Ω) .

Here, C denotes a generic constant.

We use the Wendland compactly supported rbf [12] with a (level-specific)
scaling parameter δ > 0 . We define the scaled kernels as

Φδ(x) := δ−dΦ
(x
δ

)
. (1)

For the Wendland’s functions there exist two constants 0 < c1 6 c2 such that
the Fourier transform of Φ, Φ̂, satisfies [12]

c1
(
1+ ‖ω‖22

)−τ
6 Φ̂(ω) 6 c2

(
1+ ‖ω‖22

)−τ , ω ∈ Rd . (2)
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The native space of the Wendland’s functions NΦ(Rd) is norm equivalent
to the Sobolev space Hτ(Rd). Consequently, the Fourier transform of Φδ,
Φ̂δ(ω) = Φ̂(δω) satisfies

c1
(
1+ δ2‖ω‖22

)−τ
6 Φ̂δ(ω) 6 c2

(
1+ δ2‖ω‖22

)−τ , ω ∈ Rd . (3)

We require norm equivalence as stated in the following lemma of Chernih and
Le Gia [3].

Lemma 2. For every δ ∈ (0, δa] and for all g ∈ Hτ(Rd) there exist constants
0 < c3 6 c4 such that

c3‖g‖Φδ 6 ‖g‖Hτ(Rd) 6 c4δ−τ‖g‖Φδ .

3 Multiscale collocation

In this section we consider the pde

Lu(x) = f(x) , x in Ω , (4)

with
B(x) = g(x) , x on ∂Ω , (5)

whereΩ ⊆ Rd is a bounded domain with a Ck,s boundary ∂Ω, with k ∈ N0 and
s ∈ [0, 1) . The differential operator L is elliptic and self-adjoint of order m,
for some m > 0, for which we assume there exist constants 0 < c5 6 c6 such
that

c5(1+ ‖ω‖22)m/2 6 L̂(ω) 6 c6(1+ ‖ω‖22)m/2 . (6)

The operator B is a boundary operator.

Suppose that Φ is a kernel that satisfies condition (2) for some τ > m+ d/2 .
This assumption ensures that we may apply L twice to one of the argu-
ments of Φ and still have a continuous function. We choose interior and
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boundary point sets as X = X1 ∪ X2 where X1 = {x1, . . . ,xn} ⊆ Ω and
X2 = {xn+1, . . . ,xN} ⊆ ∂Ω and we construct our approximation

ũ =

n∑
j=1

αjL2Φ(‖ · − xj‖2) +
N∑

j=n+1

αjB2Φ(‖ · − xj‖2) , (7)

where the subscript of 2 on L and B indicates that these operators act with
respect to their second argument. The mesh norms of X1 and X2 are given by
h1 and h2, respectively.

Without loss of generality, we only consider the case where the rbf centres
coincide with the collocation points. In this case, solving (4) and (5) by
collocation on the set X1 is equivalent to selecting ũ such that the collocation
equations

Lu(xj) = Lũ(xj) = f(xj) , xj ∈ X1 , (8)
Bu(xj) = Bũ(xj) = g(xj) , xj ∈ X2 , (9)

are satisfied. The resulting linear system that is formed by evaluating (4)
and (5) at the collocation points X with the approximation (7) is of the form
Ac = f where the collocation matrix

A =

[
ALL2 ALB2

ALL2 ABB2

]
, (10)

with entries

(ALL2)ij = LL2Φ(x,ξ)|x=xi,ξ=ξj , xi,ξj ∈ X1 ,
(ALB2)ij = LB2Φ(x,ξ)|x=xi,ξ=ξj , xi ∈ X1 ,ξj ∈ X2 ,
(ABL2)ij = BL2Φ(x,ξ)|x=xi,ξ=ξj , xi ∈ X2 ,ξj ∈ X1 ,
(ABB2)ij = BB2Φ(x,ξ)|x=xi,ξ=ξj , xi,ξj ∈ X2 .

The vector f consists of the entries f(xi), xi ∈ X1 , followed by entries g(xi),
xi ∈ X2 . We note that u, ũ are elements of Hτ(Ω). Under the assumption
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that the functionals {λ1, . . . , λN},

λj(u) := δxj ◦ L(u) = (Lu)(xj) , j = 1, . . . ,n ,
λj(u) := δxj ◦B(u) = (Bu)(xj) , j = n+ 1, . . . ,N ,

are linearly independent, the symmetric collocation matrix is nonsingular and
there exists an unique approximation satisfying the collocation conditions (8)
and (9) [12, Section 16.3].

The error between the solution and the approximate solution depends on the
mesh norms of the interior and boundary centres, as given in the following
lemma.

Lemma 3. Assume that the exact solution of (4) belongs to Hτ(Ω) with
τ > m+ d/2 . Let h1 be the mesh norm of the interior collocation points X1,
let Φ be a positive definite kernel satisfying (2) and let ũ be the approximate
solution obtained by symmetric collocation. Then we have the error bounds

‖u− ũ‖L2(Ω) 6 ch
τ−m
1 ‖u− ũ‖Hτ(Ω) 6 ch

τ−m
1 ‖u‖Hτ(Ω) ,

and
‖u− ũ‖L2(∂Ω) 6 Ch

τ−1/2
2 ‖u− ũ‖Hτ(Ω) . (11)

Proof: From Giesl and Wendland [6],

‖Lu− Lũ‖L2(Ω) 6 Ch
τ−m
1 ‖u‖Hτ(Ω) .

Now with (6) and Lemma 3 we reach

‖u− ũ‖L2(Ω) 6 C‖Lu− Lũ‖L2(Ω) 6 Ch
τ−m
1 ‖u‖Hτ(Ω) ,

which proves the first result. The second result is from Giesl and Wendland [6,
Theorem 3.10]. ♠
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Algorithm 1: Multiscale symmetric collocation approximation
Data: n, the number of levels;
{X1,i,X2,i}ni=1 , the interior and boundary collocation points for each
level i;
{h1,i,h2,i}ni=1 , mesh norms at each level, satisfying cµh̄i 6 h̄i+1 6 µh̄i ,
where h̄i = max(h1,i,h2,i) with fixed µ ∈ (0, 1), c ∈ (0, 1] and h1
sufficiently small;
{δi}

n
i=1 , the scale parameters to use at each level, satisfying

δi = νh̄
1−(2m+d)/(2τ)
i , where ν is a fixed constant.

1 begin
2 Set ũ0 = 0 , f0 = f ,g0 = g
3 for i = 1, 2, . . . ,n do
4 With the scaled kernel Φδi , solve the symmetric collocation

linear system

Lsi(x) = fi−1(x) , for all x ∈ X1,i ,
Bsi(x) = gi−1(x) , for all x ∈ X2,i .

Update the solution and residual according to

ũi = ũi−1 + si ,
fi = fi−1 − Lsi ,
gi = gi−1 −Bsi .

5 end
6 end

Result: Approximate solution ũn at level n. The error at level n is
en := u− ũn .
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Algorithm 1 is the formal statement of our multiscale algorithm for the
symmetric collocation solution of (4) and (5).

The following theorem and corollaries are our main results for the convergence
of the multiscale symmetric collocation algorithm.

Theorem 4. Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary.
Let Φ be a kernel generating Hτ(Rd) and Φj be defined by (1) with scale
factor δj. Then for Algorithm 1 there exists a constant α1 > 0 such that

‖Eej‖Φj+1 6 α1‖Eej−1‖Φj for j = 1, 2, . . . ,

where Eej is the extension operator defined in Lemma 1 applied to the error
at level j defined in Algorithm 1.

Proof: We write

‖Eej‖2Φj+1 6
1

c1

∫
Rd

|Êej(ω)|2
(
1+ δ2j+1‖ω‖22

)τ
dω =:

1

c1
(I1 + I2)

with

I1 :=

∫
‖ω‖26 1

δj+1

|Êej(ω)|2
(
1+ δ2j+1‖ω‖22

)τ
dω ,

I2 :=

∫
‖ω‖2> 1

δj+1

|Êej(ω)|2
(
1+ δ2j+1‖ω‖22

)τ
dω .

Now we consider the first integral, where we use δj+1‖ω‖2 6 1 and then
Lemma 3 and Lemma 2. This is valid since sj ∈ Vj is the approximate solution
with symmetric collocation of Lej−1 = fj−1. Then

I1 6 2τ
∫
‖ω‖26 1

δj+1

|Êej(ω)|2 dω 6 2τ‖Eej‖2L2(Rd) 6 C‖ej‖
2
L2(Ω)

6 Ch2τ−2m1,j ‖ej−1‖2Hτ(Ω) 6 Ch
2τ−2m
1,j δ−2τj ‖Eej−1‖2Φj

6 Cν−2τ‖Eej−1‖2Φj ,
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where we have also used Lemma 3. For the second integral I2 we use

δj+1/δj = (h̄j+1/h̄j)
1−(2m+d)/(2τ) 6 µ1−(2m+d)/(2τ) ,

and since δj+1‖ω‖2 > 1 ,(
1+ δ2j+1‖ω‖22

)τ
6 2τδ2τj+1‖ω‖2τ2 6 2τµ2τ−2m−d

(
1+ δ2j ‖ω‖22

)τ .
Then using (3) we obtain

I2 6 2
τc2µ

2τ−2m−d‖Eej‖2Φj 6 2
τc2µ

2τ−2m−d‖Eej−1‖2Φj ,

since the interpolant is norm-minimal with respect to the NΦj(Rd)-norm.
Combining our results for I1 and I2 and now writing C11 and C12 for the two
constants appearing in the bounds of the expressions for I1 and I2, respectively,
we find that

‖Eej‖2Φj+1 6
(
ν−2τC11/c1 + µ

2τ−2m−dC12/c1
)
‖Eej−1‖2Φj ,

and the result follows with

α1 :=
(
ν−2τC11/c1 + µ

2τ−2m−dC12/c1
)1/2 .

♠

Corollary 5. There exist constants C13 > 0 and C14 > 0 such that for the
solutions of the multiscale symmetric collocation from Algorithm 1 we have
the following error bounds

‖u− ũn‖L2(Ω) 6 C13α
n
1 ‖u‖Hτ(Ω) for n = 1 , 2, . . . , (12)

and
‖u− ũn‖L2(∂Ω) 6 C14α

n
1 ‖u‖Hτ(Ω) for n = 1, 2, . . . . (13)

Thus ũn resulting from Algorithm 1 converges linearly to u in the L2-norm
in Ω and on ∂Ω if α1 < 1 .
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Proof: We first consider the solution in Ω. Using Lemma 3 and (3),

‖u− ũn‖L2(Ω) = ‖en‖L2(Ω) 6 Ch
τ−m
1,n ‖en−1‖Hτ(Ω)

6 Ch̄τ−mn δ−τn+1‖Een‖Φn+1 6 C‖Een‖Φn+1
6 Cαn1 ‖u‖Φ1 6 Cαn1 ‖u‖Hτ(Ω) ,

since

h̄τ−mn δ−τn+1 = ν
−τh̄τ−mn h̄

−τ+m+d/2
n+1 6 ν−τ

(
h̄n

h̄n+1

)τ−m
6 ν−τ(cµ)m−τ .

With (11), the proof for the second result follows in an identical fashion to
the proof for the first result. In this case we need

h
τ−1/2
2,n δ−τn+1 6 ν

−τh̄τ−1/2n h̄
−τ+1/2
n+1 6 C(cµ)1/2−τ .

♠

Corollary 6. There exist constants C15 > 0 and C16 > 0 such that for
the solutions of the multiscale symmetric collocation algorithm we have the
following error bounds

‖u− ũn‖L∞(Ω) 6 C15α
n
1 ‖u‖Hτ(Ω) , for n = 1, 2, . . . , (14)

and
‖u− ũn‖L∞(∂Ω) 6 C16α

n
1 ‖u‖Hτ(Ω) , for n = 1, 2, . . . . (15)

Thus ũn resulting from Algorithm 1 converges linearly to u in the L∞-norm
in Ω and on ∂Ω if α1 < 1 .

Proof: The proofs are very similar to the previous corollary and we only
highlight the differences in both cases. In Ω,

‖u− ũn‖L∞(Ω) 6 C‖Lu− Lũn‖L∞(Ω) ,
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if we assume that the coefficients of L are in, say, Cm. Then, from Giesl and
Wendland [6],

‖Lu− Lũ‖L∞(Ω) 6 Ch
τ−m−d/2
1 ‖u‖Hτ(Ω) ,

and since

h
τ−m−d/2
1,n δ−τn+1 = ν

−τ

(
h̄n

h̄n+1

)τ−m−d/2

6 C(cµ)τ−m−d/2 , (16)

the result follows. On ∂Ω we need to use [6, Theorem 3.10]

‖u− ũ‖L∞(∂Ω) 6 Ch
τ−d/2
2 ‖u− ũ‖Hτ(Ω) , (17)

and
h
τ−d/2
2,n δ−τn+1 6 ν

−τh̄τ−d/2n h̄
−τ+d/2
n+1 6 C(cµ)−τ+d/2 .

♠

4 Numerical experiments

In this section we present results from applying the symmetric collocation
algorithm to the following Poisson problem with Dirichlet boundary condi-
tions [4],

∇2u(x,y) = −
5

4
π2 sin(πx) cos

(πy
2

)
, (x,y) ∈ Ω := [0, 1]2 ,

u(x,y) = sin(πx) , (x,y) ∈ Γ1 := {(x,y) : 0 6 x 6 1 ,y = 0} ,
u(x,y) = 0 , (x,y) ∈ Γ2 := ∂Ω \Γ1 .

The exact solution is

u(x,y) = sin(πx) cos
(πy
2

)
.
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Table 1: The number of equally spaced points used at each level and the
associated mesh norm for the numerical experiments.
Level 1 2 3 4 5

N 25 81 289 1089 4225

h̄ 1.75× 10−1 8.76× 10−2 4.37× 10−2 2.19× 10−2 1.09× 10−2

This same problem, with different scaling parameters δi and point sets,
was discussed by Fasshauer [4, Table 41.4] where convergence was observed
essentially only for a few levels. This was because they used

δi = Ch̄i ,

whilst Algorithm 1 uses

δi = νh̄
1−(2m+d)/(2τ)
i .

Fasshauer’s [4] choice of δi does not result in linear convergence since (16) is
no longer valid. This indicates the importance of the theoretical results given
in this article.

We used the C6 Wendland rbf

Φ(x) = (1− ‖x‖)8+
(
32‖x‖3 + 25‖x‖2 + 8‖x‖+ 1

)
,

which is positive definite on R2 [12, e.g.]. We used five levels for the approxi-
mation, with equally spaced point sets at each level. The number of points N
and the mesh norms h are given in Table 1. The mesh norms decrease by
almost exactly one half at each level and hence we select µ = 1

2
. There are

also 4(
√
N− 1) equally spaced boundary centres.

The scaling factors used, as specified by Algorithm 1, are given in Table 2
with ν = 3.58 . The L2 error was estimated using Gaussian quadrature with
a 300× 300 tensor product grid of Gauss–Legendre points and the L∞ error
was estimated with the same tensor product grid. Since the collocation
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Table 2: The scaling factors, approximation errors and condition numbers of
the collocation matrices for the multiscale symmetric collocation algorithm
example.

Level 1 2 3 4 5

δj 2 1.59 1.26 1 0.79
‖ej‖2 3.32e−3 1.69e−4 1.50e−5 8.58e−7 3.94e−8
‖ej‖∞ 6.06e−3 8.52e−4 6.20e−5 5.80e−6 5.38e−7
κj 1.18e+6 2.27e+8 4.23e+10 6.63e+12 1.32e+15

matrix (10) is symmetric and positive definite, the conjugate gradient method
was used to solve the linear system. In general, some degree of caution is
required with the selection of the point sets as the condition number increases
with decreasing separation radius [12, Ch. 12].

5 Conclusion

We present a theoretical analysis of a multiscale approximation algorithm
for constructing numerical solutions to elliptic pde on a bounded domain.
We prove that the approximation converges linearly to the true solution
in both the L2- and the L∞-norms, in Ω and on ∂Ω. We explain why a
similar algorithm (with different parameter choices), which was studied by
Fasshauer [4], did not provide linear convergence. Numerical experiments
support the theoretical conclusions.
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