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Abstract

We present a novel estimation of a distribution algorithm (eda),
tam-eda, which uses a multivariate t distribution model, an archive
population and a mutation operation to escape local minima, avoid
premature convergence and utilize a record of the best solutions. Earlier
edas used multivariate normal distributions to model low-cost regions
of the search space. The multivariate t distribution has heavier tails and
so is more likely to maintain diversity, while still allowing convergence
to occur. The current population of potential solutions has limited
ability to represent all the best regions of the search space explored
so far. The archive allows storage of a larger population of promising
solutions, which are then used in model building. However, the eda
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model and archive may still become stuck at suboptimal solutions, so
to combat this we introduce a decomposition mutation operation which
retains most of the attributes of a current solution but attempts large
changes in others. A comparison with generic eda, genetic algorithms
and the Nelder–Mead method shows that tam-eda is an effective
optimization algorithm for a range of test problems.
Keywords: Optimization; Estimation of Distribution Algorithms; De-
composition Mutation
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1 Introduction

Estimation of distribution algorithms (edas) are a class of derivative-free
metaheuristic algorithms for optimization, based on ideas from genetic algo-
rithms (gas). At each generation of an eda, a statistical model is estimated
using the solutions with lower objective values, and the next generation of
solutions is sampled from this model. The tam-eda proposed in this article
improves on generic edas for continuous optimization problems in three ways:

T (Multivariate t distribution) Generic edas for continuous optimization use
multivariate normal distributions as the statistical models. However,
the tails of a normal distribution fall away quickly, so points are rarely
generated far beyond the first or 99th percentiles. Multivariate t dis-
tributions have heavier tails and so are more likely to produce distant
sample solutions for exploring other regions of the search space.

A (Archive population) Exploration of all promising regions of the search
space is important for finding the global optimum in multi-modal prob-
lems. However, the current population is limited in its ability to repre-
sent the best regions found so far. We retain a larger archive population
of the best solutions found over all generations and utilize it in model
estimation.

M (Mutation operation) The mutation step of a ga aims to aid exploration,
preserve diversity and avoid premature convergence. There is no direct
analogue in an eda and so we introduced a mutation operation to be
applied to a fraction of the solutions at each iteration.

2 Background

Without loss of generality, optimization is treated as minimization where
the aim is to find x∗ such that f(x∗) 6 f(x) for all x within the space of
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interest and which meet any imposed constraints. Here we consider only
simple boundary constraints on each dimension.

An early eda for continuous optimization is the univariate marginal distri-
bution algorithm (umda) [14] which uses a univariate normal distribution
for sampling each element of the individual. This was extended to model
the dependencies among elements in the estimation of a multivariate normal
algorithm (emna) [8] which fits a multivariate normal distribution to the elite
solutions, and hence is parameterised via a mean vector and covariance matrix.
An eda utilizing the multivariate Cauchy distribution (t distribution with
one degree of freedom) was proposed by Posik [16]. This produced promis-
ing results, but was fitted heuristically rather than via maximum likelihood
estimation.

Another example of stochastic model-based algorithms that are used for
optimization purposes are cross entropy (ce) methods [20]. The ce method
for optimization is the same as edas but with truncation selection. These
two approaches were developed independently at around the same time.
The ce methods generally aim to estimate rare event probabilities and the
eda methods derive from genetic algorithms, and aim to solve optimization
problems [2, 13, 19]. Important choices in the implementation of these methods
include methods of initialisation, choice of distributions, selection method
and parameters, and constraint handling. A reasonable amount of theory
for such algorithms was developed by both the eda and ce optimization
communities [21, 12, 3, 11].

Here we model solutions using a multivariate t distribution. This provides
wider tails than the normal distribution, and offers finite mean and covariance
terms which avoid generating extreme solutions.

At each generation of tam-eda, an elite population is sampled from the
archive population using a roulette wheel sampler (rws). The multivariate
t distribution is estimated from the elite population. The next generation
of solutions is sampled from this distribution, mutations are applied to a
fraction of these and the archive is then updated using the new solutions.
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The tam-eda models the solutions sampled from the archive via a multivariate
t distribution, which is a multivariate generalization of the t distribution. In
D dimensions it has the probability distrubution function

f(x) =
Γ [(ν+D)/2]

Γ
(
ν
2

)
ν

D
2 π

D
2 |Σ|

1
2
[
1+ 1

ν
(x− µ)TΣ−1(x− µ)

](ν+D)/2
, (1)

where ν, the degrees of freedom, is a positive scalar, µ is the 1×D mean vector,
x is a 1×D vector, Γ(·) is the gamma function and Σ is a D×D symmetric
positive semidefinite matrix. The covariance matrix for this distribution
is νΣ/(ν− 2) for ν > 2 and undefined otherwise.

It is possible to estimate the degrees of freedom for the multivariate t distri-
bution. However, we did not pursue this for the following reasons.

• With the limited population size (e.g. 100) and the often large number
of dimensions, the accuracy of any such estimation will be poor. Lange
et. al [7], in their description of methods to fit the parameters of the
multivariate t distribution, claimed that for small samples, a priori fixing
the degrees of freedom at four worked well in a number of applications.

• Estimation of the degrees of freedom for the t distribution can be fairly
computationally intensive [10].

• There is little difference between the main part of the normal distribution
and most t distributions—the difference is most pronounced in the
tails. Regardless of the shape implied by data, we use a wider-tailed
distribution to encourage further exploration. This departs somewhat
from standard eda or ce methodology.

We wish to increase the probability with which rare events happen. There is
approximately a one in 10, 000 probability of producing a value more than
3.7 standard deviations from the mean with a standard normal distribution.
The t distribution with four degrees of freedom produces observations further
than 3.7 standard deviations from the mean with approximately 1% proba-
bility. We believed that this probability is high enough to allow occasional
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Figure 1: The contour plots of models built on the selected solutions.

exploration away from the current set of solutions. We do not use a distri-
bution with wider tails such as the Cauchy because this might overly slow
convergence. Therefore, the degrees of freedom ν = 4 is used in tam-eda.

Figure 1 illustrates constant density contour lines including more than 95%
of the probability for the models used in umda, emna and tam-eda when
fitted to the solutions shown. umda’s lack of covariance produces ellipsoidal
contours whose axes coincide with those of the space. Both the emna and
tam-eda models include covariance terms, so their ellipsoidal axes follow the
principal components of the solutions from the previous step. The multivariate
t distribution has heavier tails than the multivariate normal, so the contours
required to enclose most of the probability are further away from the mean,
allowing more exploration at each step.
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3 The proposed algorithm: tam-eda

3.1 tam-eda framework

The framework of tam-eda is described as follows.

1. Initialization: Sample Scp (size of current population) solutions uni-
formly from the domain. Let these comprise the current population Pc

and let the generation index t = 0 .

2. Evaluation: Evaluate the objective values of the population Pc with the
penalization method described in Section 3.2.

3. Update archive: Combine the current population Pc with the archive
population PA and retain in the archive at most the SAmax (maximum
archive size) solutions with the lowest objective values. The archive size
is now SA .

4. Sample probabilities: Calculate the rank and probability of being drawn
for each solution in the archive PA .

5. Re-sampling: Sample Scp solutions from the archive population PA

via rws using their fitness values as proportions to obtain an elite
population Pe .

6. Model fitting: Fit the multivariate t distribution with four degrees of
freedom to the elite population Pe .

7. Sample next generation of solutions: For a mutation rate of γ, randomly
select Scp · γ solutions from Pe and apply a random mutation operation
to each, as in Section 3.3. Sample Scp · (1 − γ) solutions from the
multivariate t distribution. Combine these solutions to form the next
current population Pc .

8. Repeat steps 2–7 for T generations.
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3.2 Probability and penalization

At each iteration, solutions are drawn from the archive via a rws, and we
assign a probability for each solution based on the rank of its cost value.
While this preferentially selects lower cost solutions, every state in the archive
has a reasonable probability of being selected, so some population diversity
will be maintained. The probability of the ith solution being drawn is

pi = ri
− 1

2

/ SA∑
j=1

rj
− 1

2 , i = 1, 2, . . . ,SA , (2)

where ri is the rank of the ith solution, with the lowest cost solution ranked
one.

Given the high dimensionality of the problem and the infinite support of the
generation distribution, the probability of a solution being generated beyond
the constraint boundaries is high, at least initially. Hence it is better to
allow such solutions, but penalise them so that the algorithm moves into the
feasible region over time.

The penalisation function fp(x) assigns an objective value to generated
points x based on their distance beyond each of the constraint boundaries.
We chose

fp(x) =


fmax ·

[
1+

∑D
d=1

max(bmin
d −xd,0)+max(xd−bmax

d ,0)
bmax
d −bmin

d

]
if

∑D
d=1 [IR+(bmin

d − xd) + IR+(xd − b
max
d )] > 0 ,

f(x) otherwise,

(3)

where bmin
d and bmax

d are the boundaries of the dth dimension of the search
space, fmax is the largest objective value of the solutions within the boundaries
found so far and IR+ is the indicator function for the set of positive real
numbers.

The initial generation of solutions is sampled uniformly within the boundaries
of the search space and the initial value of fmax is the maximum objective
value among these.
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3.3 Decomposition mutation operation

One concern for standard edas is that they may converge to a local minimum
or flat region and be unable to escape. While the multivariate t4 distribution
(t distribution with four degrees of freedom) of tam-eda generates some
distant solutions, this will become less common as the algorithm converges.
A mutation operation with non-converging variance could continue to offer
diversity. In constructing a mutation operation, we considered computational
complexity and the idea that retaining many aspects of a current solution
could lead to better new solutions, particularly for problems which are fully or
partly separable. This approach is related to decomposition into subproblems
utilised by Liu and Rubin [9], and to Gibbs sampling [18].

We propose a decomposition mutation operation (dmo) which at each gener-
ation randomly selects a one or two dimensional subspace in which to mutate
some of the solutions. At each generation, a fraction γ of the elite population
solutions is chosen for mutation, and with equal probabilities (0.5), either a
one or two dimensional dmo is applied, as illustrated in Figures 2 and 3 for a
Schwefel function in two dimensions.

For a selected dimension d, we add a mutation scalar Sm sampled from a t4
distribution, scaled by σd , that is, Sm/σd ∼ t4 .

For the dth dimension, σd is calculated as a fraction of the length of the
feasible region, and so across all dimensions, written in vector form,

σ = 0.6ρe−τ/10 , ρ = bmax − bmin , τ = tmod 100 , (4)

where bmin and bmax are the lower and upper boundary vectors of the search
space, respectively, and ρ is a vector of feasible region lengths, t is the
generation number and τ is a local time parameter with a period of 100 gener-
ations. Since the most appropriate scale for mutations is unknown, we allow
a range via a repeating geometric sequence of values, inspired by repetitions
of simulated annealing [5], see Figure 4.
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Figure 2: Decomposition mutation operation: numerical operations.

4 Experiments

tam-eda, umda, emna, ga and the Nelder–Mead method [6] were tested
on three 100 dimensional optimization test functions and two applications.
Standard Matlab functions from its Optimization Toolbox were employed
for the ga and the Nelder–Mead method, with the domain provided but
default options used otherwise. All algorithms were initialised from a uniform
distribution over the problem domain.
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Figure 3: Decomposition mutation operation: illustration on 2D Schwefel
problem.

Since this is an iterative algorithm and we are primarily counting the number
of cost function evaluations (since these could be expensive), it is quite possible
that the algorithm will make the same progress in five steps with population
size N or one step with population size 5N. The presence of the archive mutes
the effect of the population size since, for the purposes of storage and model
generation, the archive contains the population of interest. The members of
the current population are only placed in the archive if they improve upon
its current members.

The current population is generated by constructing a model of the current
archive and sampling from it. Once we fill the archive, the ideal population
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Figure 4: Decomposition mutation operation: repeating geometric sequence
for scale.

size is a single point, then the archive is updated and a new model constructed.
However, this process is too slow computationally, so we instead choose the
population size to be small, but reasonable, and the exact number is not so
important.

The archive size is potentially more important, since this is the basis of
model construction. We made this as large as possible while maintaining a
reasonable algorithm computation time. Larger archive sizes represent more
diversity but in lower dimensions this may offer little benefit given that the
model is a fairly simple unimodal symmetric distribution. Larger archives
may be more useful with higher dimensional problems, but they also impose
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Figure 5: Log-log plot of median opt-dist on 100 dimensional Rastrigin test
function across 31 runs.

a serious computational burden and tradeoffs must be made.

To summarise, we make the current population as small as possible and
the archive population as large as possible, tempered by considerations of
computation time.

For all experiments, tam-eda and ga used a population size of Scp = 100 .
The archive size for the tam-eda was SAmax = 500 . The mutation rate of
dmo in tam-eda was set at 0.3. The crossover and mutation rates of the ga
were set at 0.8 and 0.2, respectively.

For umda and emna, the population size was 500, and the selection step
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Figure 6: Log-log plot of median opt-dist on 100 dimensional Schwefel test
function across 31 runs.

retained the best 50% of the solutions to estimate the model at each generation.
Experimental results suggest that a larger population size, such as 500,
improves the efficiencies of umda and emna. The Nelder–Mead method was
restarted from a new random position once the one-step improvement in the
cost function fell below 10−30.

4.1 Test functions

The definition of the test functions and the search domains are given in Table 1.
For all the tested algorithms, the total number of cost function evaluations
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Figure 7: Log-log plot of median opt-dist on 100 dimensional Rosenbrock test
function across 31 runs.

Table 1: Test functions
problem objective function domain
Rastrigin f(x) = 10D+

∑D
i=1

[
x2i − 10 cos (2πxi)

]
[−5.12, 5.12]D

Schwefel f(x) = 418.9829D+
∑D

i=1

[
−xi sin

√
|xi|
]

[−500, 500]D

Rosenbrock f(x) =
∑D−1

i=1

[
100
(
xi+1 − x

2
i

)2
+ (1− xi)

2
]

[−5, 10]D
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Figure 8: Heatmap of distance to the global minimum as a power of 10 in all
dimensions for median tam-eda runs on the Rastrigin test function.

was 5 × 106 per run, with the best cost found so far recorded throughout
each algorithm run. We define the opt-dist as the difference between the
best objective value found so far and the global optimum objective value.
Log-log plots of the median opt-dist over 31 runs versus generation number
are reported in Figures 5–7 . tam-eda produced the best results for 106 or
more evaluations on all three problems and was the only algorithm to reliably
find the global minimum of the Schwefel function within the given number of
function evaluations. Although it was difficult for all the test algorithms to
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Figure 9: (Heatmap of distance to the global minimum as a power of 10 in
all dimensions for median tam-eda runs on the Schwefel test function.

find the global minimum of the Rosenbrock test function, tam-eda obtained
the solution closest to the global minimum.

Figures 8–10 show heatmaps of the best solutions obtained using tam-eda
versus the generation number for the run with median final performance of
each problem. The colours (with the scale shown in the side bar) indicate
the distance in the solution space between the best solution so far and the
position of the global minimum as a power of 10 in each dimension. These
show that the time to converge to the global optimum varied widely among
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Figure 10: Heatmap of distance to the global minimum as a power of 10 in
all dimensions for median tam-eda runs on the Rosenbrock test function.

dimensions. The Schwefel results, Figure 9, also show the algorithm becoming
stuck in various local minima before escaping, possibly due to mutations.
Each escape includes new best solutions closer to the global minimum, which
is likely due to the large-scale structure of the problem.
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4.2 Model estimation of Lorenz system

The Lorenz system was developed to model types of hydrodynamical flow
and is known to have chaotic dynamics for some combinations of parameter
values and initial conditions. The ordinary differential equations to describe
the system are

ẋ = σ(y− x) ,
ẏ = x(ρ− z) − y ,
ż = xy− βz , (5)

where x, y and z are the system variables, σ, ρ and β are the system
parameters and dots are used to show derivatives with respect to time t.

Here we consider the optimization problem of estimating the parameters of
this system based on a set of n noiseless observations, as previously studied
by Alfi [1]. The aim is to find parameter estimates to minimize the sum of
squared errors over the observations:

err =
n∑
i=1

D∑
d=1

(
Pid −Q

i
d

)2 , (6)

where P = (P1, . . . ,Pn) is the data generated using predefined parameters,
Q = (Q1, . . . ,Qn) is the corresponding data calculated using the estimated
parameters, and each observation has dimensionality D = 3 .

The parameters used for generating data were x0 = 0 , y0 = 1 , z0 = 0 ,
σ = 3.0 , ρ = 26.5 , β = 1.0 , t0 = 0 , te = 3 , where t0 and te are the initial
and end times, respectively, and 1000 equally spaced observations were taken
in this time interval. The initial state of the system was known. The number
of cost function evaluations used was 105 for each algorithm. Each evaluation
requires the solution of the differential equations and calculation of the sum
of squared errors.



4 Experiments C739

102 103 104 105
10−30

10−25

10−20

10−15

10−10

10−5

100

105

Evaluations

M
ed

ia
n 

of
 B

es
t O

pt
−

D
is

t

Lorenz ODE−3d

 

 

TAM−EDA
EMNA
UMDA
GA
Nelder−Mead

Figure 11: Lorenz model estimation.
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The t = 0 to t = 3 trajectory of the best-fitting model obtained using tam-
eda is plotted in Figure 11 (top). Progress in opt-dist is plotted versus
number of cost function evaluations for all algorithms in Figure 11 (bottom).
After 8× 104 evaluations, the median tam-eda opt-dist value was zero and
hence could no longer be plotted on a log scale. The true parameters were
found to the limits of Matlab’s double precision, that is, 15–16 decimal digits.

The Nelder–Mead method achieved excellent results sooner than the other
methods: after about 2, 500 function evaluations. The gas made steady,
but slower progress, but umda and emna failed to make progress on this
problem.

4.3 Transistor design problem

Dimmer and Cutteridge [4] described a a transistor modelling problem which
was studied by many others [15, 17]. This problem reduces to minimising a
sum of squares involving a set of nine dimensional nonlinear equations. The
objective function to be minimized is

f(x) = δ2 +

4∑
k=1

(α2k + β
2
k) , (7)

where

αk = (1− x1x2)x3 exp
[
x5(g1k − 10

−3g3kx7 − 10
−3g5kx8) − 1

]
− g5k + g4kx2 ,

βk = (1− x1x2)x4 exp
[
x6(g1k − g2k − 10

−3g3kx7 + 10
−3g4kx9) − 1

]
− g5kx1 + g4k ,

δ = x1x3 − x2x4 ,
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Figure 12: Transistor design problem.

and constant matrix

g =


0.49 0.75 0.87 0.98
0.37 1.25 0.70 1.46
5.21 10.07 22.93 20.22
23.30 101.78 111.46 191.27
28.51 111.85 134.39 211.48

 .

The number of evaluations used was 5 × 106 for all the algorithms. The
opt-dist is plotted in Figure 12. The best solution is obtained by tam-eda
and has an objective value of 5.4 × 10−29, and the median objective value
in 31 runs was 6.5 × 10−29. The best solution found by Price [17] with a
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controlled random search was 3.9× 10−4 in 3× 104 function evaluations, and
Pant et al. [15] were unable to match this using a particle swarm method.
The ga produced a median objective value of 0.19, while umda and emna
were unable to find a solution with a function value lower than 10.

5 Conclusion

We proposed a new type of derivative-free eda, namely tam-eda, which uses
a multivariate t distribution model, maintains an archive of the best solutions
seen so far, and utilises mutation operations to allow exploration throughout
all stages of algorithm convergence. This article also introduced a mutation
operation (dmo) specifically for tam-eda to expand the searching range.
Experiments were conducted to compare the proposed algorithm with generic
edas to two widely used derivative-free alternatives: genetic algorithms and
the Nelder–Mead method. tam-eda produced the best median results on
each of five test problems, although the number of iterations required for
this varied widely. Some insights into the behaviour of the algorithm were
obtained through the use of heatmaps to track the distance from the global
optimum in each dimension.
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