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Abstract

We present both fully resolved direct numerical simulation and
large eddy simulation results for turbulent stratified flow in an open
channel with periodic boundaries in the stream-wise direction and no-
slip vertical sidewalls in the span-wise direction. A uniform heat source
term is applied in the top 20% of the domain, approximating the solar
heat flux into a river system. After each time step the total scalar flux
input into the domain is uniformly removed allowing a fully developed
flow field to be evolved and statistics collected. This approach allows
fully developed stratified flow to be simulated with a density profile
which includes a lower non-stratified region, steep thermocline and
an upper laminar mixed layer region. The Reynolds number for the
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flows is in the range 5400–7300 and the bulk Richardson number in the
range 0–0.4.
Subject class: 76F25
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1 Introduction

In rivers and estuaries density stratification occurs as a result of thermal or
saline stratification. Small scale direct numerical simulation studies of these
flows provide valuable insights which supplement field observations. Garg et
al. [1], Komori et al. [2] and Wang and Lu [3] examined open channel flow with
an isothermal surface and an adiabatic or isothermal lower boundary condition.
Taylor et al. [4] applied a constant heat flux to the upper stress-free boundary
in an open channel flow simulation with an adiabatic lower wall. Under both
conditions the density gradient is very strong at the heated surfaces but
low over the remainder of the channel. None of these simulations produce
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the typical pycnocline found in real estuary and river flows, where lateral
transport and surface mixing or cooling can have the effect of flattening the
density profile near the surface forming a mixed layer. To date no small scale
numerical simulation has been performed where the typical environmental
flow conditions are achieved. In this work we present a numerical simulation of
stratified open channel flow where fully developed stratified flow is simulated
with a wide range of density profiles. We also examine stratified open channel
flow with sidewalls for the first time.

2 Problem formulation

The configuration considered here is a regular channel with sidewalls as
illustrated in Figure 1. The stream-wise X direction is periodic and the flow
is driven by a constant pressure gradient. The span-wise (Y direction) side
walls and the bottom wall are smooth no-slip boundaries and the top surface
is stress free, approximating a free surface. The U, V and W velocities are in
the X, Y,Z directions respectively. Gravity is aligned with Z. The domain size
is (2π,B,H) with an aspect ratio of A = B/H = 3 . A temporally constant
but spatially varying heat source Q(Z) is imposed on the flow.

The flow is similar to that considered by Taylor et al. [4] in that the domain
is subjected to a constant energy flux and all other boundaries are adiabatic
or periodic. After an initial transient period, the temperature field Φ evolves
to a state where the energy input from the source term is transported across
the channel at a constant rate so,

Φ(Z, T) = Φ ′(Z, T) + Φ̄(T) , (1)

where Φ ′ is the statistically steady temperature field and the uniform increase
in temperature with time T is

∂Φ̄(T)

∂T
=

Q̄

ρ0Cp
(2)
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Figure 1: Schematic of the simulation domain, with flow driven by a constant
pressure gradient Px.

and

Q̄ =
1

H

∫H
0

Q(Z)dZ , (3)

where Q is the depth varying volumetric heat source. A non-dimensional
statistically steady temperature field φ is defined as

φ = [Φ− Φ̄(T)]/ΦN , (4)

where
ΦN =

QNH

ρ0CpUτ
, (5)

and Cp is the specific heat, ρ0 is a reference density and Uτ is a reference
velocity defined in Section 2.1. The non-dimensional heat source consistent
with (4) is

q(Z) = [Q(Z) − Q̄]/QN , (6)

where QN is a free dimensional quantity which scales the temperature field.
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2.1 Governing equations

We perform both direct numerical simulations of the Navier–Stokes equations
and large eddy simulations of the filtered equations. In both cases we consider
only incompressible fluid with the Oberbeck–Boussinesq approximation for
buoyancy. These equations for the conservation of mass, momentum and
energy are written in non-dimensional form as

∇ · u = 0 , (7)
∂u

∂t
+∇ · (uu) = −∇p+ 1

Reτ
∇2u+Afex + Erφez +∇ · νt∇u , (8)

∂φ

∂t
+∇ · (uφ) =

1

Reτ Pr
∇2φ+ q+∇ · νt

Prt
∇φ , (9)

where ex and ez are the unit vectors in the x and z directions. The non-
dimensional length, time and pressure are x = X/H , y = Y/H , z = Z/H ,
t = TUτ/H and p = P/ρ0U

2
τ . The non-dimensional temperature field is

defined by (4) and q by (6). The non-dimensional velocity vector u, with
components (u, v,w) in (x,y, z), is normalised by the friction velocity Uτ
which is set through the specified Reτ = UτH/ν and the constant imposed
pressure gradient in the stream-wise direction Afex where Af = (2+A)/A .
The Prandtl number Pr = ν/α = 0.71 where ν and α are the kinematic
viscosity and scalar diffusivity of the fluid. The final terms in (8)–(9) are
the modelled residual stress for the large eddy simulations (les) described in
Section 2.2. With these substitutions the non-dimensional gravitational term
in the momentum equation becomes

Er =
H2gβQN

U3τρ0Cp
∼
dEp/dT

dEk/dT
, (10)

where g is the gravitational acceleration and β is the coefficient of thermal
expansion. A physically meaningful definition of QN remains to be given.
Equation (10) is interpreted as the ratio of the potential energy input into
the domain Ep to the mechanical energy input Ek. Turner [5] hypothesised
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that in wind induced surface mixing in oceans, a constant fraction of Ek
produced by wind shear is available to mix the stratified surface layer thereby
converting Ek into Ep. Similar interpretations have been proposed as a metric
to delineate between stratified and non-stratified flow regimes in wind induced
surface mixing of estuaries [6] and bottom friction induced mixing in coastal
flows [7] and river flows [8]. Following these examples, we take the rate of
work per unit area produced by shear stress at the bottom wall,

dEk

dT
= τwUτ = U

3
τρ0 , (11)

and the required potential energy to de-stratify the flow with time,

dEp

dT
=
gβ
∫H
0

[
Q̄−Q(Z)

]
(H− Z)dZ

Cp
. (12)

Taking the ratio of (12) and (11) results in (10) if QN is

QN =
1

H2

∫H
0

[Q̄−Q(Z)](H− Z)dZ . (13)

The profile for the heat source is important. As the profile becomes more
uniform, Q(Z) approaches Q̄ and both q and QN go to zero and there is a
constant increase in temperature through out the height and dEp/dT = 0 .
Additionally, if dEp/dT is negative then the stratification is unstable and the
energy ratio in (10) is not relevant.

In specifying the problem, Reτ and Er are given together with q(z), which
fully describes the problem. The boundary conditions on the side walls and
bottom wall which are no-slip and adiabatic are

u = v = w = 0 ,
dφ

dz
= 0 on z = 0 , (14)

u = v = w = 0 ,
dφ

dy
= 0 on y = 0 ,y = A . (15)
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The top boundary, where z = 1 , approximates a free surface with an adiabatic,
no stress (slip) boundary condition,

∂u

∂x
=
∂v

∂y
= w = 0 ,

dφ

dz
= 0 on z = 1 . (16)

The dimensional heat source is constant over the upper 20% of the domain
height and zero over the rest of the height. In non-dimensional form the
source term becomes

q(z) =

{
10 for 0.8 < z < 1 ,
−2.5 for 0.8 6 z .

(17)

2.2 Turbulence model

In the les the grid is too large to resolve all the scales of fluid motion. The
unresolved non-linear terms arising from the implicit filtering of the equations
by the grid discretisation are modelled in this study using the dynamic
Smagorinsky model (dsm) of Germano [9]. In this model the eddy viscosity
νt = 2cs∆

2|S| where |S| = (2SijSij)
1/2 and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 .

The model coefficient cs and length scale ∆2 are calculated dynamically by
explicitly filtering the flow field, assuming similarity between the smallest
resolved scales and the unresolved scales [9]. We employ a top-hat filter in
the horizontal plane only with a width 1.7 times the mesh size. The model
coefficient is stabilised by averaging in the stream-wise direction only. This
method is now standard [10, e.g.]. The eddy diffusivity in equation (9) is
calculated using a constant turbulent Prandtl number Prt = 0.7 .

2.3 Numerical method

The equations are solved using the fractional step finite volume solver de-
scribed by Armfield [11, 12]. The code uses a cell-centred co-located storage



2 Problem formulation C95

Table 1: Flow simulation parameters and results. Nx,Ny,Nz are the number
of grid points in the x,y, z directions.

Er Reτ ReB RiB Pr (Nx,Ny,Nz)
0 325 5467 0 0.71 (256, 300, 120) dns
0 325 5614 0 0.71 (128, 170, 120) les
1.25 325 6394 0.188 0.71 (128, 170, 120) les
2.23 325 7255 0.417 0.71 (128, 170, 120) les

arrangement for flow variables on a regular structured grid, with cell-face ve-
locities calculated using the Rhie–Chow momentum interpolation. The spatial
derivatives are discretised using second order central finite differences. The
Adams–Bashforth time advancement scheme is used for the non-linear terms
and Crank–Nicolson for the time advancement of the diffusive terms. The
pressure correction equation is solved using a stabilised bi-conjugate gradient
solver with Stone’s strongly implicit procedure [13] as the pre-conditioner.
The momentum and energy equations are solved using a Jacobi solver.

The simulation parameters are presented in Table 1. les is used to examine
flow at three stratification levels and one direct numerical simulation (dns)
is performed to demonstrate grid independence. In the les the grid is still
very well resolved with grid spacing in wall units ∆x+ = ∆xReτ = 16.25 ,
∆y+min = ∆z+min = 0.45 , ∆y+max = 7.6 and ∆z+z=1 = 3.25 . The important non-
dimensional parameters which can only be evaluate a postiori are the bulk
Reynolds number Reb = UbH/ν which varies with stratification strength and
the bulk Richardson number Rib = σH/U2b where σ = (Φ1 −Φ0)βg where
Φ1 and Φ0 are the mean temperatures on the upper and lower horizontal walls
and Ub is the average stream-wise velocity. The stratification is moderate at
Er = 1.25−2.23 with RiB = 0.188−0.417 .
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3 Results

The simulations were run until statistically steady conditions were reached and
then statistics were collected over a further t = 80 non-dimensional time units.
In Figure 2 the mean stream-wise velocity contours are given, overlaid with
lateral velocity vectors. In the passive scalar case Er = 0 the circulation in the
channel depresses the thermocline and the location of maximum stream-wise
velocity is below the surface. At Er = 1.25 and Er = 2.23 the strength of the
stratification inhibits this motion and the circulation in the upper region has
the opposite circulation from that at Er = 0 .

In Figure 3(a–f) vertical profiles of the mean flow quantities are given in the
centre of the channel. Here 〈 · 〉 indicates time averaging and a prime indicates
fluctuation from the mean, that is u = 〈u〉 + u ′ . In Figure 3(a) the mean
stream-wise velocity 〈u〉 increases near the surface as stratification strength
increases, whereas in Figure 3(b) the mean shear 〈u ′w ′〉 decreases in this
region. The normal stresses are not significantly damped at the surface or
at the base of the channel, as shown in Figure 3(c). At Er = 2.23 the rms
velocity fluctuation urms = 〈u ′u ′〉1/2 actually increases slightly at z ≈ 0.8 .
With isothermal or isoflux boundary conditions used in previous studies [2, 4]
the temperature gradient was shown to be greatest at the walls and if the
lower wall is isothermal, that is stratified, then the turbulence is damped.
In the present configuration the maximum gradient occurs in the centre of
the mixing layer for all Richardson numbers, as shown in Figure 3(d–e), and
turbulence is only slightly damped at the lower wall. The overall temperature
increases with stratification as a result of the reduction in vertical transport
of φ. Figure 3(f) shows the rms temperature fluctuation φrms = 〈φ ′φ ′〉1/2
peaks at z ≈ 0.65 for Er > 0 while for Er = 0 it peaks at z ≈ 0.8 . When
normalised by ∆φ = φ1−φ0 , φrms is significantly reduced with stratification.
The dns and les results compare well for all quantities.
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(a)

(b)

(c)

Figure 2: Contours of mean u for (a) Er = 0 (les) (b) Er = 1.25 and
(c) Er = 2.23 , with legend above each figure. Thick solid line indicates φ = 0 .
scaled velocity vectors are overlaid.



3 Results C98

(a)
0 10 20 30 40

<u> 
0

0.2

0.4

0.6

0.8

1

z

(b)
0 0.2 0.4 0.6 0.8

<u’w’>

0

0.2

0.4

0.6

0.8

1

z

(c)
0 1 2 3 4 5 6

urms

0

0.2

0.4

0.6

0.8

1

z

(d)
-20 0 20 40 60

<φ>
0

0.2

0.4

0.6

0.8

1

z

(e)
0 0.2 0.4 0.6 0.8

<φ−φ0>/∆φ
0

0.2

0.4

0.6

0.8

1

z

(f)
0 2 4 6 8

φrms

0

0.2

0.4

0.6

0.8

1

z

Figure 3: Mean flow quantities with height z at y = 1.5 where solid lines give
Er = 0 , thin dashed line Er = 1.25 and dashed-dotted line Er = 2.23 . Thick
dashed line is dns result at Er = 0 , and 〈u ′w ′〉 in (b) excludes les model
component.
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4 Conclusions

We examine the characteristics of a previously unreported canonical model of
stratified open channel flow, where a heat source is applied directly in the
flow domain, rather than at the boundaries. The configuration was tested
at bulk Richardson numbers which are high compared with other studies
of this type. We find that turbulence is maintained over the entire channel
height and that the resultant temperature profile has characteristics which
are more analogous to some environmental flows, such as rivers and estuaries,
than previous efforts. The use of the scaling Er as a governing parameter
is also suggested. Our simulations are also the first to include sidewalls
with concurrent stratification. We found that these strongly influence the
circulation and scalar and momentum transport in the channel.
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