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Abstract

Mixed boundary value problems occur in a wide variety of appli-
cations in applied mathematics. These problems are characterised by
a combination of Dirichlet and Neumann conditions along at least one
boundary. For example, problems in both saturated and unsaturated
flow usually contain mixed boundary conditions. Historically, only a
small subset of these problems could be solved using analytic series
methods, by using an appropriate coordinate transformation or choice
of axes.

However, there are some striking similarities between the mixed
boundary problem and the free boundary problem, where the location
of one boundary is initially unknown. This unknown boundary is
subject to two boundary conditions, and so the problem can be fully
defined. In this paper, I will point out the similarities between mixed
boundary and free boundary problems. I will consider mixed boundary
conditions of the form

α(x, y)φ(x, y) + β(x, y)
∂

∂m
φ(x, y) = γ(x, y),

where φ satisfies Laplace’s equation. Finally, I will present an iterative
method to find analytic series solutions for problems of this type.
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1 Introduction

Laplacian boundary value problems occur in a wide range of engineering
and applied mathematics applications. Problems encountered in these areas
range from straightforward Dirichlet or Neumann type problems through
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mixed Dirichlet-Neumann type problems to the much more difficult free
boundary problems. For example, problems of these types regularly occur in
the study of transport processes in porous media. In particular, infiltration
and seepage problems generally involve either mixed and/or unknown bound-
ary value problems. In most practical applications, the boundary geometries
are irregular, and in the past purely numerical schemes were usually chosen
to obtain an approximate solution.

Recently, analytic series solutions have been developed to solve both
known and unknown boundary problems, on irregular solution domains [1,
2, 4]. The series used in the solution is obtained using the classic method
of separation of variables. These methods have several advantages over their
numerical counterparts. They are fast and accurate, with exact global maxi-
mum error bounds available. The solution is continuous throughout the flow
field, and can be used to drive numerical advection-diffusion solvers, without
recalculating the flow field at each mesh refinement step. In addition, all
the associated parameters are immediately available, including the stream
function and velocity field.

Another advantage of the series approach is that the solution process does
not depend on the method used to represent the boundary geometries. As
a consequence, cubic splines and other commonly available interpolants can
be used for discrete boundary data, as well as exact formulations for known
geometries. In particular, for free boundary problems the free boundary
location can be approximated using cubic splines, or any other interpolants,
and the knot spacing can be changed arbitrarily during the solution process.
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Classically, series methods have only been applicable to simple mixed
boundary condition problems defined on regular boundaries, when the co-
ordinate axes can be chosen to align with the boundaries, and (apart from
some straightforward exceptions) each boundary condition is exclusively ei-
ther Dirichlet or Neumann. Analytic series methods have been extended to
irregular boundary geometries and free boundary problems, but the solution
has not been directly applied to the general mixed boundary value problem.
Although free boundary problems implicitly contain a mixed boundary value
problem, the solution method entails solving a sequence of known boundary
value problems. On each of these boundaries (including the free boundary),
the boundary conditions are either Dirichlet or Neumann, but not both.

In this paper, I compare mixed boundary and free boundary problems,
and provide an iterative method to solve the classical mixed boundary value
problem. The method will be used to provide solutions for a saturated seep-
age problem. At the algorithmic level, there is a striking similarity between
the solution techniques for the two types of problem. These similarities will
be discussed, and I will indicate the advantages to solving mixed boundary
problems that flow on from these similarities.

2 Problem Definition

In this section, the general Laplacian mixed boundary value problem is de-
fined. In the interior of the solution domain, Laplace’s equation for φ(x, y)



2 Problem Definition C1243

is satisfied:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0. (1)

On (at least) one boundary, a boundary condition of the following form must
be satisfied:

α(x, y)φ(x, y) + β(x, y)
∂

∂m
φ(x, y) = γ(x, y), (2)

where ∂
∂m

denotes differentiation normal to the boundary. We assume that
this boundary condition holds on the boundary y = f(x), and can’t be broken
down into separate Dirichlet and Neumann conditions by a suitable choice
of axes or coordinate transformation. The mixed boundary condition along
f(x) becomes:

ᾱ(x)φ̄(x) + β̄(x)
∂

∂m
φ̄ = γ̄(x) (3)

where

φ̄(x) = φ(x, f(x)),
∂

∂m
φ̄(x) =

∂

∂m
φ(x, f(x)) (4)

and
ᾱ(x) = α(x, f(x)), β̄(x) = β(x, f(x)), γ̄(x) = γ(x, f(x)) (5)

There are three different categories that the mixed boundary condition
described by equation (1) can be broken into. They are:

1. ᾱ(x), β̄(x) are constant functions of x;
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2. ᾱ(x), β̄(x) are continuous functions of x;

3. ᾱ(x), β̄(x) are discontinuous functions of x.
For example, φ̄(x) is specified on [0, a) and ∂

∂m
φ̄(x) is specified on [a, s].

Problems that fall into the first category are readily solved using existing
methods. For problems in the second category, the solution method is not
as straightforward as in the first case, but these problems can still be solved
reasonable easily. The third category of problems are the most difficult, and
it is to problems of this type that the rest of this paper will be devoted.

2.1 A Specific Problem

In order to develop the solution method, we will focus on a specific problem.
A rectangular boundary geometry has been chosen, so that the focus is on the
mixed boundary condition, rather than the solution domain. Note that the
method described in this paper is readily applied to an arbitrary boundary
geometry.

Consider steady saturated seepage from a dam through an aquifer to a
pond. The surface of the aquifer between the base of the dam wall and
the pond is horizontal, and the aquifer of length s and constant depth 1
lies on top of a horizontal impermeable aquiclude. Upstream, water has
ponded to a height h2, while downstream the ponded water has height h1
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(h1 < h2). Along the upstream section of the soil surface, the discharge rate
is known, while the downstream section acts as a seepage face. Figure 1 gives
a schematic of the soil horizon.

Mathematically, the problem can be formulated as follows. Inside the
saturated soil, seepage is governed by Darcy’s law. Assuming constant hy-
draulic conductivity K and invoking the continuity condition, the hydraulic
potential φ is governed by Laplace’s equation, inside the aquifer:

∇2φ(x, y) = 0. (6)

Along the vertical boundaries at x = 0 and x = s, the boundary conditions
are given by

φ(0, y) = h1, φ(s, y) = h2. (7)

Along the impermeable aquiclude y = 0, the boundary condition becomes

K
∂

∂y
φ(x, 0) = 0. (8)

Along the soil surface y = 1, the mixed boundary condition is

φ(x, 1) = 1, 0 ≤ x < a; (9)

K
∂

∂y
φ(x, 1) = R(x), a ≤ x ≤ s. (10)
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Figure 1: Schematic of the saturated flow domain.
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3 Series Solution

The problem formulated in the previous section needs to be transformed
slightly [3], so that separation of variables can be used to obtain an analytic
series solution. Letting

φ(x, y) = h1 +
x(h2 − h1)

s
+ ϕ, (11)

then ϕ satisfies Laplace’s equation:

∇2ϕ = 0 (12)

with homogeneous side boundary conditions

ϕ(0, y) = 0, ϕ(s, y) = 0 (13)

and homogeneous bottom boundary condition

∂

∂y
ϕ(x, 0) = 0. (14)

The classical method of separation of variables can now be applied to (12).
Using the homogeneous side (13) and bottom (14) boundary conditions, the
analytic series solution is readily shown to be

ϕ(x, y) =
∞∑

n=1

An cosh
(
nπy

s

)
sin

(
nπx

s

)
. (15)
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The series solution for the original problem becomes

φ(x, y) = h1 +
x(h2 − h1)

s
+

∞∑
n=1

An cosh
(
nπy

s

)
sin

(
nπx

s

)
. (16)

Note that this series solution satisfies both the inhomogeneous side bound-
ary conditions (7) and homogeneous bottom boundary condition (8) of the
original problem exactly. The top boundary condition (9), (10) is used to
evaluate the series coefficients An, and so fully define the solution. Unfor-
tunately, the classical approach breaks down at this point, as the boundary
condition is not a linear combination of φ and ∂φ

∂y
. Consequently, the orthog-

onality relationship cannot be used (directly!) to determine the An.

4 Free Boundary Problems

The mixed boundary problem defined and discussed in the previous sections
is a steady, saturated flow problem. Unsaturated seepage problems occur
when there is not enough water available to completely saturate the aquifer.
For example, in hillside seepage the water lies below the soil surface when the
recharge rate is not high enough to ensure saturation. Locating the water
table location η(x) is a free boundary problem. Assuming the water table
intersects the soil surface f(x) at some point x = a say, the soil surface
and the water table delineate the saturated aquifer boundary. Letting this
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boundary be denoted by yt(x), then

yt(x) =

{
f(x), 0 ≤ x < a
η(x), a ≤ x ≤ s

. (17)

The boundary conditions along yt(x) becomes

φ(x, yt(x)) = yt(x), 0 ≤ x ≤ s, (18)

K
∂

∂m
φ(x, yt(x)) = R(x), a ≤ x ≤ s. (19)

The method used [1, 2, 4] to solve for η(x) consists of two steps. First, η(x)
is approximated using splines or some other interpolants. Next, an initial
guess of the water table location is made, and then iteratively improved.
At each step, yt(x) is known, and the Neumann condition is used as a cost
function to perform the updates. The cost function to be minimised in the
L2 (or least squares) norm sense is

C(x) =


∫ s

a

(
R(x) −K

∂

∂m
φ(x, yt(x))

)2

dx




1
2

. (20)

In essence, the free boundary problem has been reduced to solving a sequence
of known boundary value problems. The potential condition (18) is used as
the top boundary condition, and thus the implicit mixed boundary problem
has been avoided.
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4.1 The Free Boundary Condition

The Neumann condition along the water table can be linearised, by using the
stream function. The Cauchy Riemann equations for the conjugate stream
function ψ(x, y) are given by

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
. (21)

Along y = η(x), equation (19) becomes

K
∂

∂m
φ(x, η(x)) = K

(
∂

∂y
φ(x, η(x) − ∂

∂x
φ(x, η(x))

d

dx
η(x)

)
(22)

= −K
(
∂

∂x
ψ(x, η(x)) +

∂

∂y
ψ(x, η(x))

d

dx
η(x)

)
(23)

= −K d

dx
ψ̄(x) (24)

= R(x) (25)

where ψ̄(x) = ψ(x, η(x)). Integrating with respect to x, the stream function
condition along the free surface becomes

ψ̄(x) = r(x), (26)

where
Kr(x) = −

∫
R(x) dx. (27)
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With these changes, the cost function (20) to be minimised becomes

C(x) =
[∫ s

a

(
r(x) − ψ̄(x)

)2
dx
] 1

2

. (28)

The free surface boundary η(x) can be approximated using an almost
arbitrary range of interpolants. In this paper, cubic splines are used, as
they are universally available and are efficient to use and implement. The
cost function can now be evaluated and minimised, now that η(x) has been
approximated. As the approximation depends on the iteration number, let
the approximate water table location at iteration i be denoted by η(i)(x).

A wide range of sophisticated methods have been tried by the author
and others to minimise the cost function. However, in practice a very simple
approach appears to work best. Letting bracketed superscripts indicate the
iterate number, the update at each knot point (ξj, η

(i)
j ), j = 1, . . . ,M is

based on the following quasi-Newton method:

η
(i+1)
j = η

(i)
j − C

(
r(x) − ψ̄(x)

)
, (29)

where C is the quasi-Newton constant. After each iteration, the error in the
cost function (28) can be calculated and compared with the previous value.

The continuous nature of the solution allows enormous flexibility when
setting up the iterative scheme. In practice, the stability and efficiency of the
iterative scheme can be markedly improved, by averaging the point update
η

(i+1)
j at each knot point (ξj, η

(i)
j ) over the interval [ξj − δj , ξj + δj], where
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δj is chosen (as small or large as necessary) to enhance the convergence

properties. The point estimates η
(i+1)
j in equation (29) are replaced by the

averaged estimates η̂i+1
j [1, 5]:

η̂
(i+1)
j =

1

2δj

∫ ξj+δj

ξj−δj

η(i)(x) − C
(
r(x) − ψ̄(x)

)
dx. (30)

5 An iterative Method for Mixed Boundary

Conditions

For the free boundary problem, the boundary conditions (18), (19) along the
upper (soil) surface yt(x) can be represented as

f(x) known, 0 ≤ x < a ; η(x) unknown, a ≤ x ≤ s; (31)

φ̄(x) known, 0 ≤ x < a ; φ̄(x) known, a ≤ x ≤ s; (32)

∂φ̄

∂y
unknown, 0 ≤ x < a ;

∂φ̄

∂y
known, a ≤ x ≤ s. (33)

Similarly, the mixed boundary conditions (9), (10) along the soil surface
f(x) = 1 can be represented as

f(x) known, 0 ≤ x < a ; f(x) known, a ≤ x ≤ s; (34)

φ̄(x) known, 0 ≤ x < a ; φ̄(x) unknown, a ≤ x ≤ s; (35)
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∂φ̄

∂y
unknown, 0 ≤ x < a ;

∂φ̄

∂y
known, a ≤ x ≤ s. (36)

An inspection of the preceding summaries of the the free and mixed
boundary problems reveals a number of similarities. The only significant
difference is that η(x), a ≤ x ≤ s is unknown in the free boundary problem,
while φ̄(x), a ≤ x ≤ s is unknown in the mixed boundary problem. In
effect, the roles of η(x) and φ̄(x) have been interchanged. This suggests the
following iterative approach to solve the mixed boundary problem.

First, approximate φ̄(x) on the unknown region, from a ≤ x ≤ s, using
cubic splines. Denote this approximation at iteration i by φ̄(i)(x) . Now that
the potential is “known” along the entire upper boundary, the series coeffi-
cients can be evaluated using the orthogonality relationship. Next, convert
the Neumann condition (10) to a stream function condition, so that

ψ̄(x) = r(x), (37)

on y = 1 from x = a to x = s.

Finally, make an initial estimate φ̄(0)(x) of φ̄(x), a ≤ x ≤ s and iteratively
improve the estimates using a quasi Newton scheme. Thus, at iteration i,
the updated potential at knot (ξj, 1), j = 1, . . . ,M is given by

φ̄
(i+1)
j = φ̄

(i)
j − C

(
r(x) − ψ̄(x)

)
, (38)
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where C is the quasi Newton constant. As for the free boundary problem,
these point estimates are replaced by the averaged estimates

φ̂
(i)
j =

1

2δj

∫ ξj+δj

ξj−δj

φ̄(i)(x) − C
(
r(x) − ψ̄(x)

)
dx. (39)

6 Implementation and Solutions

Implementing the series solution first requires that the interpolants for the
unknown potential be specified. For the example given in this paper, the
Matlab routine spline was used. The derivative endpoint conditions for
this routine are the ‘not a knot’ conditions. At the first and last knot points
(a, 1) and (s, 1), the potential does not change. So, at any iteration i,

φ̄(i)(a) = h1, φ̄(i)(s) = h2. (40)

Initially, two spline segments were used to approximate the potential from
x = a to x = s. At the first iteration, a straight line approximation was used.
This approximation was iteratively improved, until either

1. a preset error tolerance for the Neumann condition was met and the
iterative procedure terminated;
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2. the change in the potential at each knot was below a preset tolerance. In
this case, more spline segments were added and the iterative procedure
continued.

The stability of the iterative scheme is strongly influenced by the choice
of the quasi Newton constant, C. After some experimentation, a value of
C = 0.5 was chosen for two spline segments, and a value of C = 0.1 was
chosen for three or more spline segments, for the results presented in this
paper.

Given a value for the potential function, the series coefficients An in (16)
can be evaluated, using an orthogonality relationship. Noting that the po-
tential at iteration i is given by φ̄(i)(x), then

An =
2

s cosh(nπ/s)

∫ s

0

(
φ̄(i)(x) − h1 − x(h2 − h1)

s

)
sin

nπx

s
dx (41)

These integrals can be evaluated analytically or numerically. In the results
given in this paper, the integrals were calculated numerically using the Mat-
lab routine quad8.

The series solution is truncated, after sufficient terms have been included.
The root-mean-squared error (rms) εg of the approximation of g(x) by ĝ(x)
is defined to be

εg =
(

1

s

∫ s

0
(g(x) − ĝ(x))2 dx

) 1
2

(42)
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For the example given in this paper, 10–20 terms were sufficient to produce
rms errors in the range 10−2–10−3 for the potential approximation.

Solutions were obtained for a number of parameter values and recharge
distributions. Typically, 5–10 iterations were required for two spline seg-
ments, and a further 10–20 iterations were required when three to five spline
segments were considered necessary to achieve sufficient accuracy. The rms
errors in the stream function approximation were of the same order (10−2–
10−3), except where there appeared to be a discontinuity in the stream func-
tion. For these cases, the errors were an order of magnitude larger.

Figure 1 and Figure 2 show streamline plots for typical solutions, with
s = 1, a = 0.5 The recharge distribution used for Figure 1 was r(x) =
0.05(x− 0.5)2 − 1.24, 0.5 ≤ x ≤ 1, while the recharge distribution used for
Figure 2 was r(x) = −1.66 x2 + 3.32 x − 0.25, 0.5 ≤ x ≤ 1. Due to space
limitations, further flow plots have not been included.

7 Discussion

The similarities between the mathematical description of the free boundary
and mixed boundary value problems leads to an iterative solution method
for the mixed boundary value problem. In addition, the similarities continue
during the iterative process. I found that all of the techniques that are useful
for free boundary problems were also applicable to the mixed boundary prob-
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Figure 2: Flow solution using r(x) = −1.66x2 +3.32x−0.25, 0.5 ≤ x ≤ 1



References C1258

lems. The is also a strong relationship between the numerical behaviour of
both types of problem. For example, convergence can be poor for free bound-
ary problems when the point updates (29) are used in the Quasi-Newton
scheme. An exactly analogous behaviour was found for the iterative scheme
for the mixed boundary value problem.

Another algorithmic similarity is in the values of the Quasi-Newton con-
stant, C. In both types of problem, as the number of spline segments in-
creases, C must be decreased. I found that the range of values that worked
best for free boundary problems were also the values that worked best for
the mixed boundary problem.

The behaviour of both schemes is very similar, when there are disconti-
nuities present. Although it is beyond the scope of this paper, the methods
that have been developed to work when discontinuities are present in the free
boundary problem should also work for the mixed boundary problem. How-
ever, note that we don’t know in advance if a discontinuity will be present, for
the mixed boundary problem. This and other point on the mixed boundary
value problem will be the focus of future research.
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