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Bifurcating combustion behaviour
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Abstract

Many different combustion situations exhibit bifurcations. Some
of these are merely artefacts of the models constructed, but others are
of physical significance. This paper will discuss the calculation of this
behaviour as it occurs in several situations; namely, spontaneous ther-
mal ignition in a sphere, propagating flames and microgravity flame
balls.
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1 Introduction

Mathematical models of combustion usually involve nonlinear source terms in
the equations for energy and mass conservation. This is aside from the fluid
dynamical nonlinearities which can be relevant in cases where an unknown
flow is coupled to the combustion and must be solved for simultaneously.
The non-linearities in the energy and mass equations tend to preclude ex-
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act analytical solutions for combustion problems, although it is sometimes
possible to construct asymptotic solutions for certain parameter ranges.

On the other hand, the same non-linearities are responsible for quite
interesting equilibrium response curves and also some remarkable dynamic
behaviour. Phenomena such as extinction, ignition and pulsation can all be
found in these mathematical models of combustion and seem to correspond
reasonably well to behaviour observed with real chemical combustion reac-
tions. One of the main ways of identifying this behaviour in the combustion
models is to seek bifurcations in equilibrium curves and in other response di-
agrams. This paper will consider three combustion examples where this has
been done numerically: spontaneous ignition in the sphere, traveling solid
combustion waves, and microgravity flame balls. In each case it was not pos-
sible to obtain the bifurcation diagrams directly from the partial differential
equations. Rather, it was necessary to first simplify the problem and conduct
some preparatory analysis. Only then, by the use of path following methods,
was it possible obtain the bifurcation diagrams and unravel the interesting
non-linear behaviour characteristic of mathematical models of combustion.

2 Thermal Ignition in the Sphere

If we seek a balance between the effect of diffusional fluxes of temperature
and an exothermic reaction f(u) in a homogeneous sphere, then it can be
shown (Frank-Kamenetskii [5], Zeldovich [13, pp.158–161, e.g.], Weber, Wake
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and Balakrishnan [10] and references therein) that the non-dimensional tem-
perature variable u must satisfy

d2u

dr2
+

2

r

du

dr
+ λe−1/u = 0. (1)

This equation represents a steady-state and non-dimensionalised state-
ment of the principle of conservation of energy and as such is the starting
point for many investigations into thermal ignition theory. Naturally this
equation will need to be solved for the temperature u, as a function of the
radial coordinate r and the parameter λ, subject to the appropriate Dirichlet
boundary conditions.

In order to keep the subsequent analysis and presentation of results rea-
sonably simple, we shall restrict our study to the case where the exterior is
held at a constant temperature; called the ambient temperature and denoted
ua. Due to the use of dimensionless parameters, we can assume, without loss
of generality, that the sphere has unit radius. Hence our boundary conditions
can be written as

du

dr

∣∣∣∣
r=0

= 0, (2a)

u(1) = ua. (2b)

The first of these is merely a statement requiring bounded solutions at the
centre of our spherically symmetric domain. Additionally, it should be noted
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that our choice of reasonably simple boundary conditions is not essential for
the surprisingly complex solutions which we will display. It does, however,
make our task of presenting, explaining and analysing the results somewhat
easier and (hopefully) less confusing.

Solutions of equation (1) subject to boundary conditions (2) need to be
constructed numerically (with the possible exception of a series approach for
the simple exponential reaction as detailed in Frank-Kamenetskii [5]). Cer-
tainly there has been considerable effort in this direction and a consistent
picture of the results has emerged. For sufficiently large λ and for some
0 < ua < 1

4
, there is found to exist one low temperature solution, stable

to temporal perturbations, and one high temperature solution, also stable
to temporal perturbations. In addition, there exists a large number of in-
termediate solutions, all of which are unstable to temporal perturbations.
This is best displayed and understood with a bifurcation diagram, plotting
the maximal steady state temperature u(0) as a function of a bifurcation
parameter; for example ua, and holding the other parameter, λ, constant. In
Figure 1 (after Weber et al. [12]), the result for λ = 1012, a realistic value for
milk powder [8], is shown and it can be clearly seen that for certain values of
ua, there can exist upto seven intermediate steady states; all of which turn
out to be unstable if analysed by a linear, temporal, stability analysis or if
analysed numerically. This bifurcation diagram was obtained using a path
following routine implemented in Matlabtm and verified with a routine from
auto97 [4].
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Figure 1: Bifurcation diagram showing the central temperature u(0) as a
function of ambient temperature ua for fixed λ = 1012 for a unit sphere. For
the particular value ua = 0.0292, shown by the dotted line, five unstable,
intermediate, steady state profiles exist and are labelled B, C, D, E and F.
The profile labelled A is the lowest and is stable. The uppermost profile is
also stable but cannot be accommodated within the scaling shown here.
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3 Combustion Waves for Gases (Le = 1) and

Solids (Le → ∞)

Also of considerable interest are possible bifurcations in the wave speed of
combustion waves, as first observed by Shkadinskii et al. [9], analysed by
Matkowsky and Sivashinsky [7] and subsequently followed up by others, in-
cluding Bayliss and Matkowsky [1]. The original analysis was carried out
for a delta-function model of the reaction and all the subsequent work has
utilised the traditional choice for non-dimensional temperature, θ. While all
the research has given consistent answers, there is still a small element of
doubt concerning the appearance of chaotic combustion waves in the original
partial differential equation system. Independent confirmation of these re-
sults, particularly when these are obtained with a significantly different non-
dimensional temperature and a completely different numerical method (e.g.
Weber et al. [11]), provides useful evidence that the results are not merely
an artefact of the delta-function model (analysis) or a particular method for
discretising the equations (numerical).

3.1 Governing Equations

Consider a premixed fuel arranged in a one-dimensional configuration with
possible, bulk heat loss. An example would be a heavily insulated, long
cylinder of a pyrotechnic mixture. Assuming that the rate of exothermic



3 Combustion Waves for Gases (Le = 1) and Solids (Le → ∞) C1472

ρ density of fuel (kg m−3)

cp specific heat of fuel (J kg−1K−1)

k thermal conductivity of fuel (J s−1m−1K−1)

Q heat of reaction (J mol−1)

A pre-exponential rate constant (s−1)

E activation energy (J mol−1)

R universal gas constant (8.314 J mol−1 K−1)

h heat transfer coefficient from fuel to surroundings (J s−1m−2K−1)

S/V surface area to volume ratio for fuel configuration (m−1)

D molecular diffusivity of fuel (m2s−1)

combustion is well described by the Arrhenius Law, it follows from the con-
servation of energy and chemical species that governing equations are

ρcp
∂T

∂t
= k

∂2T

∂x2
+ QAY e−E/RT − hS

V
(T − Ta), (3a)

∂Y

∂t
= D

∂2Y

∂x2
− AY e−E/RT . (3b)

In these equations, the temperature (in Kelvin) and concentration (in mol
m−3) of the fuel are denoted by T and Y respectively; and x and t describe
space and time coordinates. All the other quantities are constants (though
some can be easily controlled in any given experiment).
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Defining the non-dimensional temperature to be

u =
RT

E
, (4)

and rescaling the space and time coordinates where x has had (QAY0R/kE)
1
2

and t has had (QAY0R/ρcpE) absorbed respectively, the two coupled equa-
tions can be written in non-dimensional form as

∂u

∂t
=

∂2u

∂x2
+ ye−1/u − `(u − ua) (5a)

∂y

∂t
=

1

Le

∂2y

∂x2
− βye−1/u (5b)

The new parameters are

ua = RTa/E, (6a)

` = hSE/V QAY0R, (6b)

Le = k/Dρcp, (6c)

β = ρcpE/RQY0. (6d)

Of these parameters, ua and ` are obvious control variables for laboratory
experiments as they are the non-dimensional equivalents of the ambient tem-
perature (Ta) and the heat coefficient (h) respectively. These can both be
confidently manipulated in the laboratory. Y0 is a reference concentration.
The Lewis number, Le, has two particularly significant values; Le around one
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for gaseous fuels and Le → ∞ for solid fuels, such as pyrotechnics. The last
parameter, β, can be significantly larger than unity for selected fuels and
this gives the circumstances leading to a bifurcation in the combustion wave
speed.

3.2 Numerical Solutions

Aside from being able to find asymptotic solutions; e.g. Weber et al. [11],
we can use a numerical approach to determine the speed of any combustion
waves for Le = 1 and Le → ∞ as a function of β.

The numerical results, shown in Figure 2 for Le → ∞ and with zero heat
loss, indicate that there ceases to be a permanent form travelling wave with
a single wave speed when β becomes larger than (approximately) 6.5 . This
observation accords with that of Matkowsky and Sivashinsky [7] and subse-
quently Bayliss and Matkowsky [1], although there are significant differences
in the precise details of the models and in the numerical methods. Con-
sideration of the stability of the traveling combustion wave fronts suggests
a period doubling route to chaos for the premixed solid fuel as β increases
beyond 6.5 ; i.e., as the exothermicity of the reaction is decreased.
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Figure 2: Computed wave speed for Le → ∞, showing bifurcation at β
approximately 6.5 which reflects an oscillating wave speed. The solid line
is the numerical result and the dashed line is an asymptotic approximation.
After Weber et al. [11].
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4 Flame Balls

Recent ‘drop-tower’ and ‘space shuttle’ experiments have conclusively demon-
strated that spherical flame structures can persist for long times; at least nine
minutes, [6]. It so happens that a spherical flame model was examined many
years ago by Zeldovich [13, pp.327–331, e.g.] in the hope of constructing
stable stationary solutions. While a stationary solution was found, it turned
out to be unstable to perturbations. It wasn’t until the 1990’s that Buck-
master et al established that heat losses of any kind can act as a stabilising
mechanism [2]. Experiments in 1996 and 1997 have shown multiple flame
balls with interesting dynamic behaviour. Some of the observations can be
explained with multiple ball solutions of the spherical flame model with the
inclusion of heat loss.

The governing equations for a spherical system with heat loss and first
order Arrhenius kinetics can be found from the equations for energy conser-
vation and heat and mass balance and can be written as (e.g. Buckmaster et
al. [3])

ρcp
∂T

∂t
= k∇2T + QAY e−E/RT − hS

V
(T − Ta)

∂Y

∂t
= D∇2Y − AY e−E/RT .

These equations are very similar to those written in the previous section,
except that they are now in a spherical coordinate system. They are typically
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solved subject to the flame sheet model for the reaction term

AY e−E/RT −→ Be−E/2RT∗δ(r − r∗),

as in Buckmaster et al. [3], where the constant B is a measure of the strength
of the reaction and the internal flame ball temperature is defined to be T∗.
For example, one then finds that the radius of a flame ball, r∗, is related to
the heat loss, hS/kV , by

DY∞
B

= r∗ exp


− (E/2RT∞)(

1 + Y∞Q

Le ρcpT∞
· 1�

1+r∗
√

hS/kV
�
)




The main result from this analysis is the size of the flame ball. One
can also use this steady state result to show that radiative or convective
heat losses are required to obtain a flame ball solution that is stable; that
is the solution with h = 0 is unstable, while solutions with h 6= 0 may be
stable. It is also possible to consider scenarios with multiple flame balls.
Beginning with two flame balls, one writes down the conservation equations
is then interested to determine if it is possible to have two stable, different
sized flame balls. The asymptotic analysis becomes rather complicated and
the results will be reported in a separate paper, but the answer lies in the
solution of a system of two coupled algebraic equations. Solving these for the
radii, gives the diagram shown in Figure 3, where the radius of the ball(s)
is plotted against the heat loss. The solid curve is the result for the two
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balls being of the same size. The dashed line shows a bifurcation suggesting
two different sized flame balls co-existing for a selected range of parameter
values, but all the currently available numerical and experimental evidence
suggests that this is an unstable situation.

5 Conclusion

In this paper we have shown three different instances of bifurcation occurring
in mathematical models of combustion phenomena. There are many others
that could also be added to this list, from well stirred reactors to flames
located in stagnation point flows. Hopf bifurcations and period doubling
routes to chaos are among the familiar signatures of chaos that can be found
in various forms of these models. In all of them, to understand the dynamical
behaviour and its relevance to combustion phenomena, it is necessary to first
carry out some analytical work before embarking upon computations.
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Figure 3: Flame ball size, r∗, versus heat loss parameter, hS/kV .
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