
ANZIAM J. 54 (CTAC2012) pp.C699–C719, 2014 C699

A model of workplace safety incorporating
worker interactions and simple interventions
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Abstract

Although there was substantial research into the occupational health
and safety sector over the past forty years, this generally focused on
statistical analyses of data related to costs and/or fatalities and injuries.
There is a lack of mathematical modelling of the interactions between
workers and the resulting safety dynamics of the workplace. There is
also little work investigating the potential impact of different safety
intervention programs prior to their implementation. In this article, we
present a fundamental, differential equation-based model of workplace
safety that treats worker safety habits similarly to an infectious disease
in an epidemic model. Analytical results for the model, derived via
phase plane and stability analysis, are discussed. The model is coupled
with a model of a generic safety strategy aimed at minimising unsafe
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work habits, to produce an optimal control problem. The optimal
control model is solved using the forward-backward sweep numerical
scheme implemented in Matlab.
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1 Introduction and background

During the 2009–2010 financial year, out of a total workforce of approximately
12 million Australians, 5.3% suffered a work-related injury or illness. This
resulted in a loss of workplace productivity and cost the Australian government
in workplace compensation payouts an estimated $60.6 billion or 4.8% of the
gross domestic product of the nation.

Occupational Health and Safety (ohs) was studied relatively intensely for
the past four decades with an aim to minimise unsafe work practices and
associated costs. Researchers’ interests spanned a multitude of different
approaches, including observational studies of existing programs [2, 3, 11],
developing new approaches to safety improvement, analysis of governmental
reforms at both national and state levels [4, 5, 10] and analysis of data
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regarding ohs costs [6, 7, 8]. However, to the authors’ knowledge, there
was no attempt to mathematically model interactions between workers and
the resulting impact on safety dynamics and costs in the workplace. The
apparent shortage of mathematical models presents an opportunity to develop
a selection of tools to produce a deeper understanding of the effects of different
approaches in minimising ohs costs. Here we present a preliminary model for
the dynamics of interacting populations of workers who are classified as either
‘safe’ or ‘unsafe’. The model is proposed as a basis for further investigation
regarding occupational health and safety.

The safety habits observed in a workplace depend greatly upon the regulation
and maintenance of safety structures provided by management and govern-
ment legislation. Without regulation, there is potential for unsafe practices to
become more common, increasing the risk of injury or illness in the workplace.
This results in decreased productivity through a loss of personnel as well as
the financial costs associated with sick leave, investigating the incident and
training replacement staff. Independently as well as due to government legis-
lation, businesses and industries employ intervention strategies to minimise
workplace safety incidents and maximise safety. These methods include ohs
legislation [21], on-site health and safety officers [20] and the incorporation
of risk management into the agenda of the company [9]. While all of these
interventions are in themselves costly, the objective of the company is to seek
greater benefit by reducing incident related costs by more than the cost of
the intervention itself. An obvious but important pursuit in business practice
is to limit the cost of running the company, so mathematical models that
are able to describe workplace safety dynamics and investigate the impact of
safety programs, a priori, are of great value to industry.

We consider the workforce to be split into four groups: safe and unsafe workers
who are currently either on some sort of sick leave or are actively working. The
workers interact as part of their daily work activities and are able to alter each
others’ behaviour, resulting in movement between the different populations.
The dynamics are modeled using ordinary differential equations (odes) similar
to those employed in infectious disease models [13, 16, e.g.]. To incorporate
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safety interventions and to attempt to investigate cost minimisation, we
extend the ode model to an optimal control model.

2 Mathematical model

We explore the dynamics of the workforce, in terms of safety classifications,
using a modelling strategy that is similar to the sir models of infectious
disease modelling [13, 16]. Such models were used successfully to model many
diseases including the plague [13, 17] and measles [19], and modified to model
sexually transmitted diseases such as chlamydia [15]. sir models seek to
describe the spread of an infection in a population over time by tracking
the populations of susceptible (S), infected (I) and recovered (R) individuals.
Infected individuals transmit the infection to the susceptibles through some
sort of contact, which is modeled as being proportional to the product of the
two populations. Further details on sir models are found in many sources,
but Murray provides an excellent background [16].

The link that we make between sir models of infectious diseases and the
strategy used here to describe worker safety, is to propose that safe behaviour
and unsafe behaviour is transmitted in a similar way to the infection in an
infectious disease model. That is, safeness is transmitted to unsafe workers at
a rate proportional to the product of the safe and unsafe populations. Unsafe
behaviour is transmitted in a similar way.

The model involves a system of four odes (1)–(4) where S(t) and U(t)
represent the numbers of workers at time t who undertake their jobs in a
mostly safe manner (‘safe workers’) and unsafe manner (‘unsafe workers’),
respectively. Similarly, IS(t) and IU(t) denote the numbers of injured workers
who undertake their jobs in a safe or unsafe way, respectively. We assume
that new workers are constantly entering the workforce, while workers are
fired, injured and die at some rate. Safe and unsafe workers interact, passing
on behavioral characteristics related to the safety of their work practices,
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resulting in movement between the two populations. When workers are
injured they are no longer actively working; however, after a time they can
return to work. Hence, to model the dynamics of the workforce,

St = fS + k0SU− k1SU− k2S+ k4I
S , (1)

Ut = fU − k0SU+ k1SU− k3U+ k5I
U , (2)

ISt = λSk2S− k4I
S , (3)

IUt = λUk3U− k5I
U , (4)

where fS and fU denote the constant influx of new safe and unsafe workers,
k0 is the rate at which unsafe workers convert to safe behaviour due to
interactions with safe workers, k1 is the rate at which safe workers become
unsafe due to interactions with unsafe workers, k2 is the rate at which safe
workers are fired, injured or die and k3 is the rate of injury, death or being
fired for unsafe workers. The parameters λS and λU are the fractions of injured
safe and unsafe workers, respectively, out of all those who are injured, fired
or die, and k4 and k5 are the rates at which safe and unsafe injured workers,
respectively return to their respective uninjured populations. The system is
closed by the initial conditions

S(0) = S0 , U(0) = U0 , IS(0) = IS0 , IU(0) = IU0 . (5)

The model given by equations (1)–(5) is developed further by introducing
a function, u(t), which represents an intensity level of a safety intervention
program imposed on the workforce at time t. The safety intervention function
represents the amount of effort (or cost) undertaken to adjust the behaviour
of unsafe workers to safer behaviours and is reflected in the adjusted dynamic
equations through the term u(t)U . We attempt to minimise the number of
unsafe workers at some fixed, later time, as well as the costs of the safety
program, subject to the dynamics of the workers being governed by the
ode system, and hence we have an optimal control problem. Furthermore,
we assume that we have a bounded problem as most companies will have
set some maximum quantity of resources available for ohs. Thus we have
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0 6 u(t) 6 umax , where umax is the maximum amount of resources available
for improving safety. The optimal control problem to be solved is

min
u

∫ tend

0

u2(t) dt+U(tend) , 0 6 u(t) 6 umax , (6)

where tend is the fixed end time for the problem, and subject to equations

St = fS + k0SU− k1SU− k2S+ k4I
S + u(t)U , (7)

Ut = fU − k0SU+ k1SU− k3U+ k5I
U − u(t)U , (8)

ISt = λSk2S− k4I
S , (9)

IUt = λUk3U− k5I
U , (10)

with initial conditions (5) and free final conditions for all variables.

To solve the optimal control problem, we form the Hamiltonian H and the
Lagrangian L:

H(t, x,u,σ) = u2 + σ1St + σ2Ut + σ3ISt + σ4I
U
t , (11)

L(t, x,u,σ) = H(t, x,u,σ) +ω1(t)u(t) +ω2(t)[umax − u(t)], (12)

where σ1, . . . ,σ4 are the adjoint functions, and where the two penalty multi-
pliers ω1(t) and ω2(t) satisfy

ω1(t),ω2(t) > 0 , (13)
ω1(t),ω2(t) = 0 for 0 < u∗(t) < umax , (14)

ω1(t) = 0 , ω2(t) > 0 for u(t) = 0 , (15)
ω2(t) = 0 , ω1(t) > 0 for u(t) = umax . (16)

The concavity condition on the Hamiltonian produces Huu = 2 > 0 , and
hence any optimal control will produce a minimum for (6), as required. The
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adjoint equations are then

−
∂H

∂S
= σ ′1(t) = − σ1(t)[(k0 − k1)U(t) − k2]

− σ2(t)(k1 − k0)U(t) − σ3(t)λSk2 , (17)

−
∂H

∂U
= σ ′2(t) = − σ1(t)[(k0 − k1)S(t) + u(t)] − σ4(t)λUk3

− σ2(t)[(k1 − k0)S(t) − k3 − u(t)] , (18)

−
∂H

∂IS
= σ ′3(t) = k4[σ3(t) − σ1(t)] , (19)

−
∂H

∂IU
= σ ′4(t) = k5[σ4(t) − σ2(t)] . (20)

Equations (17)–(20) are subject to the tranversality conditions

σ1(tend) = 0 , σ2(tend) = 1 , σ3(tend) = 0 , σ4(tend) = 0 . (21)

The optimality condition is

∂L

∂u

∣∣∣∣
u∗(t)

= 2u∗(t) + [σ1(t) − σ2(t)]U(t) +w1(t) −w2(t) = 0 .

Using the optimality condition, along with equations (13)–(16) we obtain the
optimal control

u∗(t) = min
[
umax, max

(
U(t)[µ2(t) − µ1(t)]

2
, 0
)]

. (22)

When u = u∗ , the system is optimised in the sense of equation (6).

3 Computational implementation

Here we present the algorithm (the forward-backward sweep method) used to
solve the bounded optimal control problem of Section 2. We adapt the single
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equation scheme outlined by Lenhart [14] to solve the multispecies model
proposed here.

Consider the optimal control problem over time interval [t0, t1] ,

max
u

∫ t1
t0

f[t, x(t),u(t)]dt subject to x ′ = g[t, x(t),u(t)] , x(t0) = x0 ,

where x ∈ Rn are the state variables, g is the vector of the right hand sides of
the state differential equations, u ∈ Rm , n is the number of state equations
and m is the number of controls to be implemented on the system.

Introduce matrices X ∈ Rn×(N+1) , Λ ∈ Rn×(N+1) and U ∈ Rm×(N+1) , where
N+ 1 is the number of time steps to be taken, X is the approximation to x
at the N + 1 time steps, and Λ is a matrix of the adjoint equations, such
as (17)–(20). Then the following steps solve the optimal control problem.

1. Make an initial guess U for u in a given time interval.

2. Using the initial condition X(1 : n, 1) = x(t0) and U, solve X forward
in time according to its differential equation in the optimality system.

3. Using the transversality condition, such as equation (21), Λ(1 : n,N+
1) = σ(t1) = 0 (where σ are the adjoint functions) and the values
for u and X, solve Λ backward in time according to its differential
equation, σ, in the optimality system.

4. Update u and output the current values as solutions. If values are not
sufficiently close, then return to step 3 using the updated X and Λ
values.

5. Check convergence. If values of the control variables in this iteration
and the last iteration are negligibly close, then control is optimal.

Computationally, the problem is not expensive to solve. We use standard Mat-
lab ode solvers to compute results and these are returned usually in 1–2 min-
utes using an iMac with 3.1GHz Intel Core i5, 4Gb 1333MHz DDR3 memory
and Matlab 2012a.
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Table 1: Parameter values used in the solution of the optimal control model
obtained from the Australian Bureau of Statistics [1], Safe Work Australia [18]
and via calculation and estimation (see main text).

parameter value source
workforce 10658000 workers [1]
fatalities 254 workers per year [18]
injuries 153562.5 workers per year [18]
fired 600000 workers per year [18]
k2 + k3 0.06626 per year Calc.
k4 + k5 0.72 per year Calc.
fS + fU 364020 workers per year Calc.
λS + λU 0.20371 Calc.

4 Results

In this section, the optimal control problem set up in Section 2 is solved using
the forward-backward sweep method as discussed in Section 3. First, the
parameters of the model are specified in Table 1. Most of the parameters
used are drawn from Safe Work Australia reports [18] and the Australian
Bureau of Statistics [1].

The parameters that are not taken from the literature are obtained as follows.
The rate of workers leaving the workforce is calculated using

k2 + k3 =
(fatalities+ injuries+ fired)

workforce
.

To accommodate the returning to work parameters of the model, k4 and k5 ,
the durable return to work rate is used [12]. The return to work rate states that
an average of 72% of workers returned to work for more than seven months
after lodging their claim. As a first approximation we take the recruitment
parameters, fS and fU , to be the difference in the number of workers leaving
the workforce and the number of workers returning to the workforce. The
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two λ terms are ratios of the number of workers injured to the number of
workers who left the workforce due to injury, death or being fired,

λS + λU =
injured

injured+ fired+ fatalities
.

For the purposes of this present study, we investigate a workforce over one
year, so tend = 1 , and we impose an arbitrary maximum value for the control
of umax . The remaining parameters, k0 and k1 , are those which are examined
as part of the solution of the model and these are specified in the results.

Initial conditions for the safe and unsafe worker populations are taken as
evenly shared quantities of the total workforce in Table 1. Similarly, injured
safe and injured unsafe workers are taken as evenly shared quantities from the
total number of injured workers in Table 1. That is, S(0) = U(0) = 5329000 ,
IS(0) = IU(0) = 76781 .

There are many parameters in this model which affect the nature of the
optimal control and the resulting treatment of the system. These parameters
include: (1) the maximum amount of resources that can be expended for safety
improvement, umax ; (2) the initial numbers of safe and unsafe workers, S(0),
U(0), IS(0), IU(0); and (3) the affect of varying the values of k0 and k1 . In
order to develop an overall understanding of the nature of the optimal control,
and the effect it has on the workplace safety dynamics, variation to each of
these parameters was investigated and will now be discussed.

It is important to understand the general nature of the system before investi-
gating what the effects of varying the parameters might be on the workplace
safety system. Figure 1 displays the behaviour of the system when there are
no safety programs applied. This figure shows the situation where conversion
to unsafe behaviour occurs faster than conversion to safe behaviour. As would
be expected, the number of unsafe workers increases while the number of safe
workers decreases. The number of injured safe workers decreases sharply while
the number of injured unsafe workers also decreases but appears to approach a
nonzero equilibrium. Due to the nature of the model, for the reverse situation
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Figure 1: Solution curves (106 workers) with no safety interventions. Shown
are S(t) (thick, solid), U(t) (thick, dash), IS(t) (solid), and IU(t) (dash) for
stronger conversion to unsafe behaviour (k1 − k0 = 0.2).

where conversion to safe behaviour is faster, the exact opposite situation
is observed with safe and unsafe populations switching curves (result not
shown).

Now we introduce the safety intervention via the optimal control problem and
consider the effect of increasing the amount of resources available to implement
the safety program. Figure 2 shows that as the amount of resourcing applied
to safety interventions increases, solution behaviour changes markedly. In
particular, we note (pleasingly) that the unsafe worker population decreases
while the safe worker population increases, with both approaching what
appears to be steady levels. Increasing the maximum amount of control
beyond that shown in Figure 2 results in a surplus that is not utilised.
Solutions quantitatively reproduce those shown in Figure 2.
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(a) umax = 0 (no intervention)
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(b) umax = 1
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(c) umax = 2
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(d) umax = 4

Figure 2: Solution curves (106 workers) S(t) (thick, solid), U(t) (thick,
dash), IS(t) (solid), and IU(t) (dash) for varying maximum levels of safety
intervention resourcing. The optimal control path u(t), given by equation (22),
is shown as a dot-dashed line.
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Next we consider the effects of varying the initial ratio of safe to unsafe
workers, which so far has been set at 1 : 1. We investigate two fairly extreme
situations of (a) 10% of the workforce safe and (b) 10% of the workforce
unsafe. For workforces with fewer safe workers than unsafe workers initially,
the resourcing of safety interventions is initially high. This leads to fast
changes in the workforce, with unsafe workers converting to safer behaviours.
The resource requirements of the intervention then decrease as the safe and
unsafe populations approach steady levels towards the end of the work year.
An example is presented in Figure 3(a) with 10% of the workforce safe at
the start of the project. Resourcing of safety interventions is important here,
where unsafe workers outnumber safe workers, as the impact of the program
is quite strong. Also, the effects of the safety intervention are maintained in
the long term with decreasing levels of resourcing. However, for workforces
with initially high levels of safe workers, the impact of the safety programs is
weaker. In Figure 3(b) we see the case where initially 90% of the workforce
display safe work habits. Here, there is basically no impact on the worker
populations from the safety interventions. It could be argued that any effort
or expense resulting from attempting to impose such interventions is wasted.

Finally, we investigate the effects on the population dynamics of varying the
interaction rates k0 and k1 . Figures 4–6 display the results from a number
of numerical solutions with varied values for the interaction parameters. For
Figures 4 and 5 the safety intervention program coupled with k0 = k1 or
k0 > k1, respectively, (equal or faster conversion to safe behaviour than
unsafe) effectively increases the proportion of workers in the workforce who
display safe behaviour. Figure 6 shows that the uninjured unsafe population
increases whenever k1 > k0 . Interestingly, despite allowing for a surplus level
of resourcing of safety intervention programs, the unsafe worker population
continues to increase and there is a resulting decrease in the resourcing
of the intervention over time. This result indicates that spending on safety
interventions is wasteful if the rate of conversion from safe to unsafe behaviour
is too high to be overcome.
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(a) 10% safe workers
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(b) 90% safe workers

Figure 3: Solution curves (106 workers) S(t) (thick, solid), U(t) (thick, dash),
IS(t) (solid), and IU(t) (dash) for varying initial ratios of safe : unsafe workers.
The optimal control path u(t), given by equation (22), is shown as a dot-
dashed line.
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(a) k0 = 0.1 , k1 = 0.1
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(b) k0 = 0.5 , k1 = 0.5
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(c) k0 = 1, k1 = 1

Figure 4: Solution curves (106 workers) S(t) (thick, solid), U(t) (thick, dash),
IS(t) (solid), and IU(t) (dash) for various behaviour conversion rate parameters
with k0 = k1 . The optimal control path u(t), given by equation (22), is
shown as a dot-dashed line.
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(a) k0 = 0.5 , k1 = 0.1
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(b) k0 = 1 , k1 = 0.1

0 0.2 0.4 0.6 0.8 1

2

4

6

8

Time (years)

U
ni
nj
ur
ed

w
or
ke
rs
S
,U

7

7.1

7.2
·10−2

In
ju
re
d
w
or
ke
rs
IS
,I
U

(c) k0 = 1 , k1 = 0.5

Figure 5: Solution curves (106 workers) S(t) (thick, solid), U(t) (thick, dash),
IS(t) (solid), and IU(t) (dash) for various behaviour conversion rate parameters
with k0 > k1 . The optimal control path u(t), given by equation (22), is
shown as a dot-dashed line.
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(a) k0 = 0.1 , k1 = 0.5
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(b) k0 = 0.1 , k1 = 1
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(c) k0 = 0.5 , k1 = 1

Figure 6: Solution curves (106 workers) S(t) (thick, solid), U(t) (thick, dash),
IS(t) (solid), and IU(t) (dash) for various behaviour conversion rate parameters
with k0 < k1 . The optimal control path u(t), given by equation (22), is
shown as a dot-dashed line.



5 Discussion C716

5 Discussion

We presented a prototype model of the dynamics of populations of workers,
classified according to their safety behaviour. The model draws on infectious
disease modelling and treats safe and unsafe behaviour similarly to a disease
that can be ‘caught’ from another worker who already displays that behaviour.
We also incorporated simple safety intervention programs theoretically via an
optimal control problem that seeks to minimise unsafe workers and the costs
due to the safety interventions. This model was solved using a multispecies
implementation of the forward-backward sweep method for solving optimally
controlled systems of odes.

Our results focus on investigating the effects of varying the level of resourcing
available to safety interventions, the initial ratio of safe to unsafe workers in
the workforce, and the safe and unsafe behavioural transmission rates. We
found that increasing the amount of resourcing to provide safety interventions
is effective in reducing the unsafe worker population toward a stable level
that is maintained with reduced levels of resourcing. We also found that
for workforces with initially high proportions of safe workers, the impact of
safety interventions is quite limited and perhaps not worth the cost of setting
up such programs. This could be quite an important finding for industries
that are known to have very few unsafe workers. Finally, the investigation of
the rates of conversion between safe and unsafe practices indicated that for
workforces where the conversion to unsafe behaviour is very high, the safety
interventions have little effect on the increasing unsafe worker populations. As
such, again, the costs of imposing the type of simple interventions investigated
here perhaps outweigh any benefits observed.

A goal of the ohs sector is to reduce the number of safety-related workplace
incidents so it is not surprising that substantial effort is directed towards
finding the most at-risk industries. In Australia, two such industries are the
construction industry and agricultural/logging industries [18]. Additionally,
inexperienced workers are also classified as an at risk group for ohs. Future
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research will adapt the modelling work carried out here to investigate such
specific industries and worker cohorts.
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