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Abstract

This paper develops an efficient numerical method for solving the
coupled fluid flow and heat transfer with solidification problem. The
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governing equations are the continuity equation, the Navier-Stokes
equations and the convection-diffusion equation with a source term
due to phase change. Fluid flow in the mushy region is modeled on
the basis of Darcy’s law for porous media and the solidification process
is simulated using a single domain approach via the use of an enthalpy
scheme for the convection-diffusion equation. The formulation of the
numerical method is cast into the framework of the Petrov-Galerkin
finite element method with a step test function across the control
volume and locally constant approximation to the fluxes of heat and
fluid. The formulation leads to the derivation of exponential interpo-
lating functions for the control volume. The use of the exponentially
fitted control volume improves the accuracy of results especially for
problems with sharp interior or boundary layers such as the solution
around the solidification front. The method is then illustrated through
a numerical example.

Contents

1 Governing equations C1582

2 Enthalpy control volume formulation C1585

3 A numerical example C1590

4 Conclusions C1595



1 Governing equations C1582

References C1595

1 Governing equations

Consider an incompressible homogeneous fluid contained in a domain Ω with
boundary ∂Ω. Let u(x,t) be the velocity field, p(x,t) = p(x,t)

ρ
− F.x with

p and ρ being the fluid pressure and density and F body free, and T (x, t)
the temperature field. Then the field equations governing the fluid flow,
heat transfer and solidification process in Ω are the continuity equation, the
Navier-Stokes equations and the convection diffusion equation, namely

∇ · v = 0, (1)

−∇ · ( 1

Re
∇v − vv − pI) = F(v,x, t), (2)

∇ · (vT − α∇T ) = Q, (3)

where Re > 0 denotes the Reynolds number, α represents the diffusivity of
fluid, F(v,x, t) is the forcing function which is proportional to the velocity
of the liquid relative to the mushy region and is given by

F(v,x, t) =
µ

ρκ
(v − vm), (4)

where µ and vm are respectively the viscosity of the fluid and the velocity
of the mushy region (assumed constant), κ denotes the permeability of fluid
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defined by [1, 14],

κ =
f(T )3

C(1 − f(T )2)
. (5)

The liquid fraction f(T ) is a function of temperature, varying from zero in the
solidified region to one in the liquid region. From (1)–(5), it is obvious that
for the solidified region, equations (1) and (2) reduce to v = vm. While for
the liquid region, F ≡ 0 and equation (2) represents the usual Navier-Stokes
equations for incompressible Newtonian fluid. The source term Q arises from
the release of latent heat due to phase change and is zero everywhere except
in the mushy region where

Q =
L

c
[∇ · (vf)] , (6)

in which L and c denote the latent heat and specific heat of liquid fluid.

For two-dimensional problems, once the function f(T ) is known, equa-
tions (1)–(3) constitute a systems of four equations in terms of four unknowns
u, v, p and T . In this paper, we will study the solution of this system of
equations subjected to the following type of boundary conditions

v = v on ∂Ω , (7)

T = T on ∂Ω1 , (8)

− k
∂T

∂n
= h∞(T − T∞) on ∂Ω2 , (9)
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where ∂Ω1 ∪ ∂Ω2 = ∂Ω, k and h∞ are respectively the conductivity of fluid
and the surface heat transfer coefficient, v, T and T∞ are known functions or
constants.

It is well known that when the Reynolds number is large, the solutions of
the coupled transport problems display sharp boundary layers so that classi-
cal methods may lead to unbounded spatial oscillations and fail to yield any
useful solutions. To overcome this problem, various Petrov-Galerkin meth-
ods such as the upwind type methods [2, 3, 5, 9] and the streamline diffusion
type methods [10, 13] have been proposed. However, it has been found that
the upwind schemes may also result in inaccurate solutions. A promising
technique is the exponentially fitted finite control volume method, which
has been developed to solve the nonlinear convection-diffusion equation [17]
and the Navier-Stokes equations with stream function and vorticity variable
as primary variables satisfactorily [12]. In this study, we develop and test
a control volume procedure for the solution of the coupled fluid flow-heat
transfer problem with velocity and temperature as primary variables within
the framework of the Petrov-Galerkin method. In the following section, we
present the Petrov-Galerkin finite element formulation for the problem. In
Section 3, we apply the method to study the coupled heat transfer and fluid
flow in an industrial process—the continuous steel casting process.
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2 Enthalpy control volume formulation

To solve the boundary value problem in Section 1, the continuity require-
ment (1) is weakened and replaced by

∇ · v = −δp, (10)

where δ is a small positive number. Thus, the variational statement corre-
sponding to the boundary value problem under consideration is the following
variational boundary value problem,

VBVP: Find v ∈ [H1(Ω)]2, p ∈ H1(Ω) and T ∈ H1(Ω) such that for all
w ∈ H1

0 (Ω), equations (7)–(8) are satisfied and

(∇ · v, w) = (−δp, w), (11)

− (∇ · ( 1

Re

∇v − vv − pI), w) = (F, w), (12)

(∇ · (vT − α∇T ), w) = (Q,w), (13)

where (·, ·) denotes the inner product on L2(Ω), H1(Ω) is the Sobolev space
W 1,2(Ω) with norm ‖ · ‖1,2,Ω,

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on Dirichlet boundary } .
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To solve the vbvp, we discretize Ω into a finite number of elements Ωi and
construct two finite dimensional subspaces Ha for v, p and T , and Ht for the
weighting function w, namely, v, p, T and w are approximated by

v ≈ vh =
N∑

i=1

φivi, p ≈ ph =
N∑

i=1

φipi,

T ≈ Th =
N∑

i=1

φiTi, w ≈ wh =
N∑

i=1

ψiwi, (14)

where φi and ψi are respectively the basis functions of Ha and Ht, namely
Ha = span(φi) and Ht = span(ψi). Thus, the two basic design choices for
the numerical approximation are the trial space Ha and the test space Ht.
The form of the error distribution over Ω depends on the choice for the
basis function ψi. To construct a control volume procedure, we choose ψi as
follows:

ψi =

{
1 on Ωi

0 otherwise.
(15)

Then from the vbvp, by taking w ≈ wh = ψi and using Green’s formula and
the one point quadrature rule for integral in Ωi, we have for i = 1, 2, 3, . . . , N,

∫
∂Ωi

v · n ds = −δ pi |Ωi|, (16)

−
∫

∂Ωi

(
1

Re

∇v − vv) · n ds = −
∫

∂Ωi

pI · n ds+ |Ωi|Fi(v,x, t), (17)



2 Enthalpy control volume formulation C1587

jX

iX n

iΩ

ijl

ije
ij

��
��
��
��

��
��
��
��

��
��
��
���

�
�

�
�
�

�
�
�
�

��
��
��
��

Figure 1: Control volume of node Xi

−
∫

∂Ωi

(α∇T − vT ) · n ds = −L
c

∫
∂Ωi

(vf) · n ds. (18)

Let X = {xi | i = 1, . . . , N} denote the set of all vertices, Ii denote the index
set of the neighbouring nodes of xi, nij be the unit vector pointing from xi

to xj , lij be the part of ∂Ωi perpendicular to the unit vector nij, as shown
in Figure 1. Then, equations (16)–(18) become

∑
j∈Ii

∫
lij

v · nij ds = −δ |Ωi|pi, (19)
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− ∑
j∈Ii

∫
lij

(
1

Re
∇v− vv) ·nij ds = − ∑

j∈Ii

∫
lij
pi I ·nij ds+ |Ωi|Fi(v,x, t), (20)

− ∑
j∈Ii

∫
lij

(α∇T − vT ) · nij ds = −L
c

∑
j∈Ii

∫
lij

(vf) · nij ds. (21)

The integral terms in equations (19)–(21) represent the outward fluxes cross-
ing lij . By approximating the flux across each lij as a constant and finding
the constant in terms of the nodal values of the unknown function at xi and
xj , we obtain ∑

j∈Ii

lijv(c) · nij = −δ |Ωi|pi, (22)

− ∑
j∈Ii

lij
Re|Ωi||xj − xi|{B(ξ)vj − B(−ξ)vi}

= − ∑
j∈Ii

lij
|Ωi| p(c)I · nij + Fi(v,x, t), (23)

− ∑
j∈Ii

lijα

|Ωi||xj − xi|{B(ζ)Tj −B(−ζ)Ti} +
L

c

∑
j∈Ii

lij
|Ωi|(vinij)fi = 0, (24)

where

v(c) =
vi + vj

2
,

ξ = Re(vi · n)|x − xi|, ζ =
1

α
(vi · n)|xj − xi|,
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and B(ξ) is the Bernoulli function defined by

B(ξ) =

{
1 ξ = 0

ξ
eξ−1

ξ 6= 0
.

For points on the heat flux boundary, using boundary condition (9), equa-
tion (1) becomes

− ∑
j∈I∗i

lijα

|Ωi||xj − xi|{B(ζ)Tj − B(−ζ)Ti}

+
L

c

∑
j∈Ii

lij
|Ωi|(vi · nij)fi =

Nb∑
k=1

lik

ρc|Ωi|{h∞(T∞ − Ti)},

where I∗i is the index set of the neighbouring nodes of xi which are not on
the heat flux boundary, lik and Nb denote respectively the length of the line
segment and the number of line segments on the heat flux boundary of ∂Ωi.
By assembling the element equations over all control volumes, we obtain

P = C(U), (25)

KuU = C′P + F, (26)

KTT + Af = Fb, (27)

where U and T are global vectors with Ui and Ti representing respectively



3 A numerical example C1590

the velocity and temperature at node i, and all coefficient matrices refer to
global matrices. Matrices Ku and KT correspond to the convection-diffusion
term; Matrix A corresponds to the convection term of latent heat; matrix C′

corresponds to the pressure term; vector C(U) corresponds to the penalty
term; vector P denotes the pressure field; vectors F and Fb provide forcing
functions for the system.

3 A numerical example

As an application example, we study the coupled fluid flow - heat transfer
in the continuous steel casting process. Various numerical studies have been
conducted to analyse the heat transfer and fluid flow phenomena in the con-
tinuous casting process [4, 6, 7, 8, 11, 15, 16]. However, only few studies solve
the coupled problem. In this paper, we use the method presented to solve the
coupled problem. Figure 2 shows the fluid flow region under consideration.
Molten steel is poured continuously into a water cooled mould through the
nozzle as shown. Intensive cooling in the rigid heat flux boundary causes a
thin solidified steel shell to form around the edge of the steel. The steel shell
is then withdrawn from the bottom of the mould at a constant speed Ucast.
The depth of the caster is zm = 0.8m, half-width is 0.875m. The submer-
gence depth of the nozzle inlet is 230mm. The nozzle port is rectangular
with a height of 76mm, a width of 55mm and an angle of 15oC downward.
The solution is limited to a depth of 8 meters below the meniscus. With the
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boundary
Heat flux

Meniscus x

z

8 m

0.82 m 0.055 m

Nozzle 0.230m

Exit boundary

Ω 7.77mCentral line

Figure 2: Computation region and coordinate system
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computer resources available and a mesh-sensitivity study, the finite volume
mesh constructed for the present study consists of 1080 nodes. The basic
parameters are as follow: T∞ = 20oC, Text = 100oC, Ucast = 0.022m/s,
ρ = 7800 kg/m3, µ = 0.001 pa.s, c = 465 J/kgoC, k = 35 W/moC, L =
272000 J/kg, h∞ = 1079 W/m2oC, the temperature of molten steel poured
into the mould is 1530oC, the solidification temperature and melting tem-
perature are respectively 1465oC and 1525oC.

Figure 3 shows the velocity vectors and temperature contours in the upper
part of the solution domain. It shows how molten steel leaves the nozzle as
a strong hot jet. The velocity of the hot jet decays to about 30% of the inlet
value while it travels only half way across a mould wall. When the jet hits
the mould wall, it splits to flow both upward and downward and then creates
a small upper recirculation zone and a big lower recirculation zone. As the
steel travels along the mould wall, it moves at the casting speed when its
temperature is below the solidification temperature (1465oC) so that there is
an abrupt change in velocity on the solid-liquid interface in the upper part of
the casting region. Eventually, the velocity profile becomes parallel further
down the strand. In this figure, the temperature profiles clearly outline the
path of the hot steel and shows how the fluid carries heat with it. The
temperature of the jet drops 2/10 of its superheat while it travels only half
way across the mould. It indicates that the jet does not cool down much in
the liquid pool. Figure 4 shows the growth of the solidified steel shell in the
mould region (0 ≤ z ≤ 0.8m). It is noted that solidification speed decreases
with depth.
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Figure 3: Velocity vectors (m/s) and temperature contours (oC)
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4 Conclusions

An efficient control volume method has been developed within the frame-
work of the Petrov-Galerkin finite element method for solving the coupled
fluid flow-heat transfer with solidification problem. The advantage of the
method is that it combines the intrinsic geometric flexibility of finite element
methods together with the desirable, direct physical invocation of a conserva-
tion principle to clearly identified and delineated control volumes comprising
the domain. The use of the exponential interpolation functions enable the
scheme to capture the rapid change of temperature in the solidification re-
gion, and the rapid change of fluid velocity near the solid-fluid interface. The
numerical investigation shows that the method developed is robust in cap-
turing the characteristics of fluid flow and heat transfer in the continuous
steel casting process.
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