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An optimal control model of dendritic cell
treatment of a growing tumour
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Abstract

A new optimal control model of the interactions between a growing
tumour and the host immune system, along with an immunotherapy
treatment strategy, is presented. The model is based on an ordinary
differential equation model of interactions between the growing tumour
and the natural killer, cytotoxic T lymphocyte and dendritic cells of
the host immune system, extended through the addition of a control
function representing the application of a dendritic cell treatment to the
system. The numerical solution of this model, obtained from a multi
species Runge–Kutta forward-backward sweep scheme, is described.
We investigate the effects of varying the maximum allowed amount of
dendritic cell vaccine administered to the system and find that control
of the tumour cell population is best effected via a high initial vaccine
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level, followed by reduced treatment and finally cessation of treatment.
We also found that increasing the strength of the dendritic cell vaccine
causes an increase in the number of natural killer cells and lymphocytes,
which in turn reduces the growth of the tumour.
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1 Introduction and background

We study an optimal control treatment strategy for the interactions between
a growing tumour and the host immune system. The numerical solution of
the model is obtained from a Runge–Kutta forward-backward sweep scheme.
An optimal control model is developed by building on an ordinary differential
equation (ode) model of tumour-immune system interactions through the
addition of a control function, u, representing the application of a dendritic
cell treatment.

Extensive mathematical research was undertaken into the growth of tumour
cell colonies. Of particular interest here is the body of research related to
the modelling of tumour interactions with the immune system and treatment
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using immunotherapy [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 17, e.g.]. Kirschner
and Panetta [13] illustrated the effect of adoptive cellular immunotherapy
through a mathematical model which consists of tumour cells, immune-effector
cells and interleukin-2. This model describes under what conditions the
tumour is destroyed as a result of the therapy. De Pillis et al. [6] developed
a mathematical model describing the growing tumour with combination
immune, vaccine and chemotherapy treatments. In addition, Cappucio et
al. [3] introduced a mathematical model of tumour immune system interactions
focusing on natural killer (nk) and T cell immunity, combined with interleukin-
21 as an immunotherapy. However, there are very few models which study the
effect of dendritic cell (dc) vaccines on a growing tumour [5, e.g.] and these
treat the immune system in a different manner to the presented research.

Optimal control theory is a commonly employed strategy to determine a
treatment method that guarantees a minimum of some cost (such as monetary
costs or harm to the patient) while minimising the tumour cell population [2,
9, 10, 11, 19, 21, e.g.], [20, for a review]. Chemotherapy is commonly studied
as the tumour treatment, while immune cell treatment [2, 11, e.g.] is more
rarely investigated.

Of particular relevance here is the work of Castiglione and Piccoli [5], who
constructed a mathematical model to describe the interaction between immune
system cells and tumour cells. They then applied optimal control methods to
find the optimal quantity of dendritic cells to be administered to the tumour
site. In the current research, we also focus on dc based immunotherapeutic
treatment; however, our work is different from Castiglione and Piccoli’s since
we include nk cells and also describe in more detail the role of dendritic cells
in tumour control.

In the following section we present an ode model of tumour cell interactions
with specific components of the immune system, that incorporates a time
varying dendritic cell based treatment strategy and also an objective functional
that we seek to minimise. We then discuss the numerical scheme itself, a
multispecies forward-backward sweep method using a Runge–Kutta ode
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solver and present a number of important numerical solutions of the optimal
control model. Finally, we discuss the results of the model in the context of
the tumour growth problem.

2 Mathematical model

To describe the interactions between the growing population of tumour cells
and specific components of the immune system, we introduce four cell species,
namely the number of tumour cells T(t) , nk cells N(t) , dendritic cells D(t) ,
and cd8+ T cells (cluster of differentiation eight) L(t) , where here t is time.

We assume that the growth of the tumour cell population is logistic, while
tumour cells are removed due to interactions with nk, dendritic and cd8+

T cells [15]. nk cells and dcs are normally present in the body, even when no
tumour cells are present. After some number of interactions with tumour cells,
nk cells and cd8+ T cells become inactive and are removed from consideration.
dcs are able to prime the activity of nk cells and cd8+ T cells [18]. Finally,
mature cd8+ T cells can clear out dendritic cells [5, 22]. Combining these
assumptions, we model the tumour-immune system interactions using the
system of odes

dT

dt
= aT(1− bT) − (c1N+ jD+ kL)T , (1)

dN

dt
= s1 − c2NT + d11

DN

m1 +D
− eN , (2)

dD

dt
= s2 + l

DT

m2 + T
− f1LD− d2DN− gD , (3)

dL

dt
= f22

DT

m3 + T
− hLT − iL , (4)

where the parameters are described, along with estimated values and literature
sources, in Table 1.
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Table 1: Parameters, values and sources, used in the solution of the model
given by equations (1)–(4). Rates a, d11, e, g and i are measured per day,
rates c1, c2, d2 f1, f22, h, j, k and l are measured per cell per day, b is
measured per cell, s1 and s2 measure cells per day, and m1, m2 and m3

measure numbers of cells.
Param. Description Value Source
a Tumour growth rate 4.31×10−1 [6]
b Inverse tumour carrying capacity 2.17×10−8 [6]
c1 nk cell tumour cell kill rate 3.5×10−6 [8]
c2 nk cell inactivation rate by tumour cells 1.0×10−7 [6]
d11 Maximum rate of nk cell activation 5.0×10−2 Est.
d2 nk cell dendritic cell kill rate 4.0×10−6 Est.
e Death rate of nk cell 4.12×10−2 [14]
f1 cd8+ T cell dendritic cell kill rate 1.0×10−8 [5]
f22 Maximum rate of cd8+ T cell activation 1.0×10−2 Est.
g Death rate of dendritic cell 2.4×10−2 [22]
h cd8+ T inactivation rate by tumour cells 3.4×10−10 [6]
i Death rate of cd8+ T cells 2.0×10−2 [6]
j Dendritic cell tumour cell kill rate 1.0×10−2 Est.
k cd8+ T cell tumour cell kill rate 1.0×10−7 Est.
s1 Source of nk cells 1.3×104 [14]
s2 Source of dendritic cells 4.8×102 [22]
l Max. dc recruitment by tumour cells 1.0×10−2 Est.
m1 nk cell activation rate steepness coeff. 1.0×104 Est.
m2 Tumour cell recruitment steepness coeff. 1.0×104 Est.
m3 cd8+ T cell activation steepness coeff. 3.0×103 Est.
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The function u(t) > 0 represents the dendritic cell vaccine treatment rate.
Positive values of u(t) correspond with an influx of dcs supplied from outside
the system. Hence, equation (3) becomes

dD

dt
= s2 + l

DT

m2 + T
− f1LD− d2DN− gD+ u(t) . (5)

We now introduce an objective functional as part of the optimal control
problem. We aim to minimise the tumour burden over the length of time
modelled, and also the ‘cost’ of the treatment, be it harm to the patient,
cost to administer treatment, or some other interpretation—here we adopt
the u2 form employed in similar works [6]. Hence we aim to minimise J[t,u(t)] ,
where

J[t,u(t)] =
∫ tf
0

[
T(t) +

B

2
u2(t)

]
dt , (6)

where tf is the specified final time and B is a weighting factor that represents
the relative importance of the cost as opposed to the tumour burden, in the
minimisation problem. In the simulations we used B = 10−3 , reflecting the
relatively higher importance placed on reducing the tumour burden than on
the cost of the treatment.

3 Computational implementation

To proceed with the solution of the optimal control problem, we first rewrite
our system as follows. We seek to solve

x ′(t) = g(t,x,u) , (7)

where x(t) = [T(t),N(t),D(t),L(t)]T is the vector of solutions of the state
equations (1), (2), (5) and (4), and g is the vector of right hand sides of the
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state equations. Also, we rewrite equation (6) as

J [t,x(t),u(t)] =
∫ tf
0

f(t,x,u)dt , (8)

where f is the integrand of equation (6).

Next, we form the Hamiltonian function

H(t,x,u,λ) = f(t,x,u) + λTg(t,x,u) .

where λ is the vector of adjoint functions. Then we have the optimality
condition

∂H

∂u
= 0 at u∗ ⇒ fu + λTgu = 0 ,

as well as the adjoint equation and transversality condition

λ ′ = −
∂H

∂x
= −(fx + λTgx) , λ(tf) = 0 . (9)

We now present the algorithm (the forward-backward sweep method) used
to solve the bounded optimal control problem of Section 2. We outline
an adapted version of the single equation scheme presented by Lenhart and
Workman [16] that allows us to solve the multispecies optimal control problem.

Consider the optimal control problem

min
u

∫ tf
t0

f [t,x(t),u(t)]dt ,

subject to x ′ = g(t,x(t),u(t)) , x(t0) = x0 ,

where x ∈ Rn×1 , u ∈ R , and n is the number of state equations. Let
X ∈ Rn×(N+1) , Λ ∈ Rn×(N+1) , U ∈ RN+1 , where N + 1 is the number of
time steps to be taken, X is the approximation to x at the N+ 1 time steps,
and Λ is a matrix of the adjoint equations. Then, to solve the optimal control
problem:



4 Results C671

1. Discretise the time domain into N + 1 equidistant mesh points t1,
t2, . . . , tN+1 ;

2. Make an initial guess U, for u over the interval;

3. Using the initial condition Xi,1 = x0 , i = 1, . . . ,N + 1 , and U, solve
equation (7) forward in time using the order four Runge–Kutta method
to obtain the next approximation for X ;

4. Using the transversality condition Λi,N+1 = λ(tf) = 0 and the values
for U and X, solve equation (9) backward in time to obtain the next
approximation for Λ ;

5. Update U. If values of U at this iteration and the last are not sufficiently
close, then return to step 3 using the updated X and Λ values. If values
are sufficiently close, then the control is optimal: output X and U as
approximations to x and u .

4 Results

In this section, the optimal control problem set up in Section 2 is solved using
the forward-backward sweep method as discussed in Section 3.

In Figure 1 we show a plot of the tumour cell population using a large
initial value of tumour cells, demonstrating the impact of the dc vaccine
based control strategy. The dashed line shows the tumour population growth
resulting from no control, while the solid line (more easily seen inset) shows
the tumour cell population eradication resulting from the optimal control
vaccine strategy. With the initial value T0 = 5× 104 cells, without vaccine,
tumour cells grow to the nonzero tumour equilibrium after around 120 days.
However, the tumour is eliminated in just under 40 days using the optimal
control strategy. The inset plot shows that the tumour cell population is
completely removed within 40 days whereas without control, the number
of tumour cells remains high at this time. The dendritic cell vaccine to be
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Figure 1: Tumour cell population evolution using a large initial tumour cell
population, showing the growth with no dc treatment (dashed) and the
impact of the dc based vaccine (solid).
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Figure 2: The optimal control, u, used for solutions in Figure 1.

administered during this treatment is seen in Figure 2. To eliminate the
tumour cells as shown in Figure 1, the maximum vaccine treatment should be
administered for approximately the first 58 days, after which the treatment
should reduce sharply and finally stop at day 62.

Increasing the strength of the dc vaccine not only impacts the tumour cell
population, it also causes increases in the numbers of nk cells (see Figure 3)
and cd8+ T cells (see Figure 4). These effects in turn reduce the tumour cell
population as shown in Figure 5. The effect is very significant in increasing
the number of cd8+ T cells, consequently reducing the tumour burden. This
particular numerical solution shows that dcs alter the population of cd8+
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Figure 3: Impact of the dc vaccine on nk cell evolution for maximum vaccine
levels umax = 2 (solid), 20 (dashed) and 200 (dotted). Increasing umax

increases the peak nk level and decreases the time to reach that peak.
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Figure 4: Impact of the dc vaccine on cd8+ T cell evolution for maximum
vaccine levels umax = 2 (solid), 20 (dashed) and 200 (dotted). Increasing umax

increases the peak cd8+ T cell level and decreases the time to reach that
peak.
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Figure 5: Impact of the dc vaccine on the tumour cell evolution for maximum
vaccine levels umax = 2 (solid), 20 (dashed) and 200 (dotted). Increasing umax

decreases the peak tumour cell level and the time to reach that peak.

T cells much more than nk cells.

5 Discussion

We have presented a new optimal control model of dendritic cell treatment
of a growing population of tumour cells. The model builds on the previous
modelling literature in terms of the type of model and the optimal control
approach, but differs from existing work through the explicit treatment of dcs
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in addition to nk and cd8+ T cells. The model was solved using a multispecies
implementation of the forward-backward sweep method for solving optimally
controlled systems of odes.

Our results focus on investigating the effects of varying the maximum allowed
amount of dc vaccine administered to the system. We found that the best
way to control the tumour cell population is to give a high vaccine level at
the beginning of the treatment and then reduce the treatment after a specific
period of time, determined as part of the solution of the optimal control
problem. We also found that increasing the strength of the dc vaccine causes
an increase in the number of nk cells and cd8+ T cells, which in turn reduces
the growth of the tumour. Increasing the strength of the dc vaccine also
reduces the required duration of the treatment.
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