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Low Prandtl number fluid convection
modelled using symbolic algebra

(REDUCE) and Matlab

Tim Passmore∗ A. J. Roberts†

(Received 7 July 2001)

Abstract

Using the Boussinesq approximation for a fluid of low
Prandtl number, a low dimensional model of the onset of
Rayleigh-Benard convection is developed. The initial roll
mode instability is considered for a fluid, heated from below,
between parallel, horizontal, non-slip, constant-temperature
boundaries. Centre manifold theory provides a way of con-
structing a low dimensional model of the resulting two di-
mensional flow. Computer algebra implemented in reduce
is used to symbolically expand the centre manifold as an
asymptotic series in the convective amplitude. The spatial
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structure functions in this expansion are then found numer-
ically in Matlab. A feature of this approach is that code
output from reduce is used, with only minor syntactic edit-
ing, as the Matlab code to perform the numerical iteration.
Thus a coding task which would have been difficult by hand
is easily automated. The technique is generally applicable to
perturbation expansions and its computational advantages
over more formal Galerkin type expansions are discussed.
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1 Introduction

The onset of Rayleigh-Bénard convection illustrates behaviour that
is typical of many physical systems governed by nonlinear partial
differential equations, as they undergo a bifurcation. The challenges
it presents to the mathematical modeller are also typical. It is neces-
sary to develop model equations which are of low enough dimension
to be tractable and yet still able to capture the dynamics of inter-
est. Centre manifold theory provides a systematic way of doing this
which does not rely on heuristic arguments [20, 21].

Sufficiently close to the bifurcation point, a local analysis based
on some form of perturbation expansion provides useful approxi-
mate solutions. Ideally, such an expansion should be capable of
being extended to higher order, if necessary, to provide better ap-
proximations. In practice, for example with formal Galerkin type
expansions [8, 12], it is often difficult to compute more than the
first few terms in the expansion and these may not provide suffi-
cient accuracy. It is not the algebraic structure of the higher order
terms which makes them difficult to compute, but their increasingly
convoluted dependence on spatial variables [12].

Rayleigh-Bénard convection has been extensively studied both
experimentally and theoretically (for recent reviews see [3, 10]). A
fluid is confined between horizontal, non-slip boundaries, here as-
sumed to have infinite horizontal extent. Heat is applied from below
in such a way that each boundary has a constant temperature, with
the temperature of the lower boundary being greater than the upper
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Figure 1: Schematic diagram of convective rolls.

boundary.

We assume that density variations within the fluid are only con-
sidered significant if they are multiplied by the gravitational accel-
eration, g, and all other material properties are assumed constant,
which is called the Boussinesq approximation [5]. Consider such a
fluid, initially at rest and transmitting heat only by conduction. As
noted by Rayleigh [19], if the temperature difference between the
lower and upper boundaries is increased, the fluid will eventually
become unstable. This buoyancy driven instability leads, in the
first instance, to a convection pattern of parallel cylindrical rolls of
moving fluid, see Figure 1.

Experimentally, quasi-Boussinesq conditions for Rayleigh-Bénard
convection have been achieved in high pressure gases [9]. Gas-
convection cells can be constructed with aspect ratios greater than
100 [16, 1], and allow visualisation of the horizontal, convective plan-
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form by the shadowgraph technique [11]. In such cells ideal straight
roll convection patterns can be generated and studied.

The Prandtl number of pure gases are typically low (σ ≈ 1),
but by using mixtures of gases, a range of Prandtl numbers from
0·17 < σ < 115 is achievable [14, 3]. The low Prandtl number regime
(σ . 1) has been of particular interest since the discovery of spiral-
defect chaos [16, 17], which is a competing stable attractor with ideal
straight rolls in the same parameter regime [6, 2]. This competition
is mediated by mean-flow effects due to roll curvature [23, 3]. It is
important therefore, to develop models of Rayleigh-Bénard convec-
tion which can incorporate these mean-flow effects, and we construct
such a model here.

From the equations of motion for the fluid (see §2) we show,
in §3, that spatially periodic solutions of the full system settle expo-
nentially quickly onto a six-dimensional centre manifold, M0, and
show how to compute M0 by iteration. Dynamical variables are
expanded asymptotically in terms of the amplitude of roll mode
convection (see §§3.1). Solutions are assumed to be periodic in
the horizontal, x direction. In the vertical, z direction, the spatial
dependence of each term in the expansion is given by a structure
function to be determined.

In §4 the computation of the vertical structure functions is done
in two steps. Firstly, with the aid of the computer algebra package
reduce, the asymptotic expansions are truncated to the desired
order and substituted into the Navier Stokes equations (see §§4.1).
reduce computes the nonlinear expression for the residual of each
term in the expansion, a task which one would not contemplate do-
ing by hand. These residual expressions are then output by reduce
in a form which, with minor syntactic editing, becomes a Matlab
m-file. In the second step, the iteration equations are discretised
in Matlab using finite differences and the structure functions are
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computed numerically by iteration (see §§4.2).

This two-step process decouples the algebraic approximation and
the numerical approximation. If truncation to a different order is
required, the reduce code must be rerun and a new m-file prepared.
If a finer numerical grid is required, Matlab iterations must be
rerun. The effect of both types of approximation on the solution can
be independently tested. However, the main advantage is that high-
order expansions are computed relatively easily. Structure functions
are computed for expansions truncated to 36, 80, 81 and 180 terms
and their corresponding solutions compared. Analytic techniques
like the Galerkin method might be expected to yield four or five
terms at best [15, Section 2.4].

Lastly, in §5, truncation errors are estimated and some indication
of useful parameter ranges are given.

2 Equations of motion for a low

Prandtl number fluid

Define Cartesian coordinates x horizontal and z vertical with non-
slip boundaries at z = 0 and z = d (see Figure 1). We assume that
the cylindrical convective rolls run parallel to the y axis and model
the flow in the xz-plane.

The equations of motion for a Newtonian, incompressible, Boussi-
nesq fluid (see for example [15]) are:

∂θ

∂t
+ u · ∇θ = κ∇2θ + βu · ẑ ,

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p + ν∇2u + αgθẑ , (1)
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∇ · u = 0 ,

where u is the fluid velocity field and ρ is the density field. θ and
p are, respectively, corrections to the static temperature and pres-
sure fields: T = T0−βz+θ , and P = P0−ρ0g(z+αβz2/2)+p . The
thermal κ, kinematic viscosity ν, gravitational acceleration g, and
volume coefficient of thermal expansion α, are all assumed constant.

2.1 Non-dimensional equations of motion

We construct a scaling of (1) to obtain non-dimensional equations
of motion appropriate to low Prandtl number fluids. Scale lengths
with d/π, pressure with ρ0ν

2π2/d2 , density with ρ0 and scale tem-
perature changes with βdσ/πR . At low Prandtl number it is best to
use the viscous diffusion time, d2/π2ν , to scale time, rather than the
thermal diffusion time [4, 15, §1.4]. The non-dimensional equations
of motion are

σ

(
∂θ

∂t
+ u · ∇θ

)
= ∇2θ + Rw ,

∂u

∂t
+ u · ∇u +∇p = ∇2u + θẑ , (2)

∇ · u = 0 .

The parameters σ and R are the Prandtl and Rayleigh numbers
respectively,

σ =
ν

κ
and R =

gαβd4

κνπ4
.

Note that the length scaling has been chosen so that the vertical
boundaries now lie at z = 0 and z = π . Constant temperature,
non-slip boundaries give boundary conditions

u = w = θ = 0 , on z = 0, π . (3)



2 Equations of motion for a low Prandtl number fluid C597

2.2 Linear stability analysis

Consider a hot droplet (θ > 0) at a higher temperature than sur-
rounding fluid, which has an undisturbed, static temperature profile.
Since the density of the droplet decreases with temperature, it is less
dense than surrounding fluid and experiences an upward buoyancy
force. The fluid is heated from below, so as the droplet moves up-
ward it encounters fluid which is even colder and more dense, the
upthrust is amplified and the droplet moves higher still. However,
counteracting the buoyancy force are two dissipative processes, vis-
cous drag which tends to slow the droplet down and thermal diffu-
sion which causes the warmer droplet to lose heat to surrounding
cooler fluid, reducing the buoyancy force.

The instability develops only if the droplet is accelerated suffi-
ciently to overcome the stabilizing effect of the dissipative processes.
The conditions under which this will occur are found by linearis-
ing (2). In the low Prandtl number regime we use σ itself as a per-
turbation parameter. This means that the term, σ(∂θ/∂t+u ·∇θ) ,
in (2) is formally nonlinear and disregarded in the linear analysis
since its contribution is small. Setting u = (u, 0, w) , the linearised
equations are

wt = wxx + wzz − pz + θ ,

ut = uxx + uzz − px ,

0 = θxx + θzz + Rw , (4)

0 = ux + wz .

If solutions have exponential time dependence, eλt, then pertur-
bations to the initial static conduction state become unstable and
grow if <λ > 0 . The principle of exchange of stabilities [4], says
that λ crosses 0 with zero imaginary part. If λ = 0 , the marginal
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Figure 2: The marginal stability curve—below this line perturba-
tions with horizontal wavenumber k are stable with negative growth
rate. Above the line perturbations are unstable and grow in ampli-
tude.

stability case, then (4) reduces to a generalised eigenvalue prob-
lem for the critical Rayleigh number Rc . Assume perturbations
are horizontally periodic and solve this numerically to generate the
marginal stability curve shown in Figure 2. The minimum point on
this curve represents the earliest possible onset of roll mode convec-
tion, at critical wavenumber kc and critical Rayleigh number1 Rc:

kc = 0·9904 and Rc = 17·5576 . (5)

1The value more usually quoted [3, 15, 5, for example], Rc ≈ 1708 , is for
horizontal boundaries at z = 0, 1 . Our scaling to z = 0, π reduces this by a
factor of π4.
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R > Rc is a sufficient condition for the onset of Rayleigh-Bénard
roll mode convection, but how do we model the actual flow that
takes place?

3 Centre manifold theory yields a low

dimensional model

In this section, we show how centre manifold theory provides a rig-
orous basis for constructing a low-dimensional model of the system.
Suppose that the linearised dynamics of a system near a fixed point
consists of eigenmodes which are either ‘slow’ or strongly stable.
Slow modes have growth rates close to zero while strongly stable
modes have large negative growth rates. The two groups are sep-
arated by a spectral gap, measured by the maximum moduli of
their eigenvalues. Provided there is a sufficiently large spectral gap,
between the slow modes and the stable modes, the stable modes
become slaved to the slow modes and adiabatically eliminated from
the dynamics [15, Chapter 5]. Potentially, there may be a large
number of stable modes eliminated in this way, in which case the
effective dynamics of the system, driven by the slow modes, is of
much lower dimension.

If the slow modes are neutral, that is, their eigenvalues are either
precisely zero or have zero real part, then sufficiently close to the
fixed point, the dynamics of the system settle exponentially quickly
onto a centre manifold. The stable modes quickly decay and the
long-term dynamics is dominated by what happens on the centre
manifold. Centre manifold theory was originally developed to an-
swer questions about the stability of nonlinear systems. We apply
it to systematically develop a low-dimensional approximation to the
evolution of roll mode convection from an initially static fluid.



3 Centre manifold theory yields a low dimensional model C600

Useful analytic properties of centre manifolds have been sum-
marised by Carr [7] for nonlinear dynamical systems with the prop-
erties as broadly described above.

1. A centre manifold M0, exists in some neighbourhood of the
fixed point [7, Theorem 1].

2. The stability properties of the fixed point on M0 are the same
as for the full system. Moreover, trajectories on M0 differ
from trajectories of the full system only by terms O (e−γt) as
t → ∞ , and γ is approximately equal to the spectral gap [7,
Theorem 2].

3. If solutions of the low-dimensional dynamics on M0 are found
to some order of accuracy, then M0 itself is given to the same
order of accuracy [7, Theorem 3].

These basic results can be generalised and extended. For in-
stance, the assumption that the eigenvalues of the linearised prob-
lem all have non-positive real parts is not necessary [7]. Roberts has
shown how to deal with a continuous spectrum near the marginal
mode [20].

In fluid convection, the theory is directly applicable to the case
of slowly-varying pure convective rolls—the one-dimensional plan-
form problem. We develop this model in §§3.1, in a systematic
way compared to earlier treatments which relied on heuristic ar-
guments [22, 18]. In real convection systems with large horizontal
extent there are likely to be many interacting and competing rolls.
The orientation and amplitude of the rolls may vary significantly
over the whole field. This leads to multi-dimensional planforms
and the issue of planform selection, where the application of centre-
manifold theory is problematic. Roberts [21] has shown how to solve
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a two-dimensional planform problem by constructing an embedding
manifold, which embeds the centre manifold. The resulting ap-
proximations are much better than the traditional Swift-Hohenberg
approximation for planform evolution.

3.1 Centre manifold construction

Write the linear dynamics (4) as(
L(k) + B

∂

∂t

)
V(x, z, t) = 0 , (6)

where

V(x, z, t) =


w(x, z, t)
u(x, z, t)
θ(x, z, t)
p(x, z, t)

 , L(k) =


−∇2 0 −I ∂z

0 −∇2 0 ∂x

R 0 ∇2 0
∂z ∂x 0 0


and

B =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 .

L(k) depends on the horizontal wavenumber k of the horizontally
periodic solution. At R = Rc = 17·5576 , the eigenvalues of (6)
are all negative except for k = ±kc = ±0·9904 , from (5), which
are marginal modes (λ = 0). Thus linearly, the solution decays
exponentially quickly to the roll solution

V = av2(z)eikcx + bv1(z)e−ikcx , (7)

where v1(z)e−ikcx and v2(z)eikcx are the marginally stable eigen-
vectors of L(k) , and a and b are the complex amplitudes of the
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rolls—the solution is real if and only if b is the complex conjugate
of a.

The full nonlinear equations (2), written in terms of L(k), meet
the requirements of §3, property 1, so we are assured that a centre
manifold exists. By §3, property 2, solutions on the centre manifold
match solutions of (2) if we wait for exponential transients to decay.

To construct the centre manifold model, expand V(x, z, t) asymp-
totically as

V(x, z, t) ∼ b E−1v1(z) + a E1v2(z) + b2 E−2v3(z)

+ ab E0v4(z) + a2 E2v5(z) + · · ·

∼
∞∑

n=0

∞∑
k=0

∞∑
j=1

j∑
m=0

σnRk
da

mbj−m E2m−jvl(z) , (8)

where we let E = eikcx , Rd = R − Rc and a and b are complex
amplitudes, posited to evolve slowly in time according to

∂a

∂t
= g(a, b, R, σ) ,

∂b

∂t
= ḡ(a, b, R, σ) . (9)

In (8), l is just a convenient label consecutively numbering the
coefficient functions when the terms are ordered in some consistent
way. If the k summation in (8) runs from 0, 1, . . . , K , and the
j summation runs from 1, 2, . . . , J , then the label l, labelling the
vl(z) , is chosen to be

l = (n(K + 1) + k)

[
J(J + 3)

2

]
+

(j − 1)(j + 2)

2
+ (m + 1) .

The form of (8) arises from (2) where nonlinear combinations of
real variables generate terms with the structure

(aE + bE−1)j =

j∑
m=0

ambj−mE2m−j .
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These terms are also multiplied by powers of the two other per-
turbation parameters, σ the Prandtl number, which is small and
Rd = R − Rc , the difference between the Rayleigh number and
critical Rayleigh number.

Likewise, g(a, b, R, σ) is expanded asymptotically as

g(a, b, R, σ) ∼
∑

n,k,j,m

σnRk
da

mbj−m gl , (10)

but here only terms with 2m−j = 1 have coefficients gl 6= 0 , because
the evolution (9), must be invariant to an arbitrary rotation eiϕ

applied to the amplitude a. Such a rotation generates a horizontal
phase shift in the flow, which is horizontally periodic. Hence the
phase shift ϕ should have no effect on the system dynamics.

3.2 Iterative scheme

To compute the nonlinear shape of the centre manifold and the
evolution thereon, we seek refinements to the linear solutions:

w = w̃ + w′ , p = p̃ + p′ ,
u = ũ + u′ , g = g̃ + g′ ,

θ = θ̃ + θ′ , ḡ = ˜̄g + ḡ′ .

These must satisfy (2), leading to

g′ E1w2(z) + ḡ′ E−1w1(z)−∇2w′ − θ′ + p′z
= −w̃t − ũw̃x − w̃w̃z − p̃z +∇2w̃ + θ̃ ,

g′ E1u2(z) + ḡ′ E−1u1(z)−∇2u′ + p′x (11)

= −ũt − ũũx − w̃ũz − p̃x +∇2ũ ,

Rw′ +∇2θ′ = σ
(
θ̃t + ũθ̃x + w̃θ̃z

)
−∇2θ̃ −Rw̃ ,

u′x + w′
z = − (ũx + w̃z) ,
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where nonlinear terms involving corrections (dashed quantities) have
been ignored and g̃ has been approximated by a linear approxima-
tion, namely 0, when it multiplies a correction. Likewise, w̃, ũ, p̃
and θ̃ have been approximated by the linear terms from (8) when
multiplied by a correction.

The time derivatives require some care, for example using (9) to
evaluate

∂u

∂t
=

∂u

∂a
·g +

∂u

∂b
· ḡ

=

(
∂u′

∂a
+

∂ũ

∂a

)
(g′ + g̃) +

(
∂u′

∂b
+

∂ũ

∂b

)
(ḡ′ + ˜̄g)

=

(
∂ũ

∂a
· g̃ +

∂ũ

∂b
· ˜̄g

)
+ g̃

∂u′

∂a
+ ˜̄g

∂u′

∂b

+ g′
∂ũ

∂a
+ ḡ′

∂ũ

∂b
+ g′

∂u′

∂a
+ ḡ′

∂u′

∂b

≈ ∂ũ

∂t
+ 0 + 0 + g′

∂ũ

∂a
+ ḡ′

∂ũ

∂b
+ 0 + 0 .

Setting

v1(z) =


w1(z)
u1(z)
θ1(z)
p1(z)

 and v2(z) =


w2(z)
u2(z)
θ2(z)
p2(z)


in (7) gives

∂ũ

∂a
= u2(z)E ,

∂ũ

∂b
= u1(z)E−1 ,

whence
ut ≈ g′u2(z)E + ḡ′u1(z)E−1 + ũt ,

and wt is approximated analogously, leading to (11).
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3.3 Solvability conditions

Equation (11) is written more succinctly as

g′EBv2(z) + ḡ′E−1Bv1(z) + L(k)V′(x, z, t) = R(Ṽ(x, z, t)) (12)

where the right-hand side represents the residual calculated for an
existing approximate solution, Ṽ(x, z, t) and V′(x, z, t) is the vector
of updates to be computed. Since L(k) is singular for k = kc—it has
a single zero eigenvalue with eigenvector Ev2(z)— we incorporate
an arbitrary multiple of this vector in the g′ term. Likewise L(k)
is singular for k = −kc , with neutral eigenvector E−1v1(z) and we
incorporate the ḡ′ term.

These terms make (12) solvable when k = ±kc . We regard g
and ḡ, and a and b, as independent variables even though physical
solutions require them to be complex conjugate pairs, which they
are once the iteration converges. In order to solve for g′ and ḡ′ in
these singular cases, we need an extra solvability condition.

Define the amplitude a(t) in (8) and (9) as

a(t) ≡ kc

π

∫ π/kc

−π/kc

1

π

∫ π

0

w(x, z, t) sin z dz E−1 dx

=
kc

π

∫ π/kc

−π/kc

w(x, z, t) sin z E−1 dx (13)

where w(x, z, t) is the vertical velocity component and the over-bar
represents averaging over z. b is defined analogously as the complex
conjugate of the above

b(t) ≡ kc

π

∫ π/kc

−π/kc

w(x, z, t) sin z E dx .
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Thus if

w(x, z, t) = bE−1w1(z) + aE1w2(z)

+ b2E−2w3(z) + abE0w4(z) + a2E2w5(z) + · · · ,

then ∫ π/kc

−π/kc

w(x, z, t) sin zE−1 dx =
2π

kc

aw2(z) sin z ,

and (13) is satisfied provided w2(z) sin z = 1
2
. Likewise, the defini-

tion for b(t) requires that w1(z) sin z = 1
2
. So a suitable solvability

condition is

wl(z) sin z =

{
1
2
, l = 1 , 2 ,

0 , otherwise ,
(14)

where the case l = 1, 2 serves to scale the eigenvectors v1(z) and v2(z),
while the ‘otherwise’ condition says that, for terms other than l =
1, 2 , the coefficient functions for vertical velocity must all be or-
thogonal to sin z .

L(0) is also singular—its null space is spanned by (0, 0, 0, 1)T—
reflecting the fact that an arbitrary constant pressure can always
be added to p in any solution of (2). In this case we append the
condition ∫ π

0

p′(z) dz = 0 , (15)

to make the solution unique. Equation (15) forces the pressure
updates to have a mean of zero, that is they do not contribute to
the mean field drift.

The iteration equation (12) and conditions (14) and (15) provide
a complete system which is solved to generate the centre manifold
model of low Prandtl number convection.
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4 Computer implementation of the

solution

To get a solution to the model equations, one must find the vertical
structure functions, vl(z), and the coefficients gl in the asymptotic
expansions (8) and (10). As discussed in §1, attempts to expand the
vl(z) in some formal basis were abandoned because of the difficulties
of computing coefficients for more than the first few terms. Instead,
we use the computer algebra package reduce to substitute expan-
sions of required form directly into the right-hand side of (12). This
generates expressions for term-by-term residuals with vl(z) and gl

still to be determined. These expressions are then output in a form
which, with simple editing, becomes a Matlab m-file. In Mat-
lab, the linear operator on the left-hand side of (12) is discretised
and, starting with an approximate linear solution, the iteration is
performed numerically.

A similar approach was used previously by Laure and Demay [13]
where the symbolic algebra package Macsyma generated fortran
code for a centre manifold model of Taylor-Couette flow.

4.1 Computer algebra implementation in
REDUCE

reduce does the tedious substitution of asymptotic expansions for
each variable into the nonlinear residuals, calculating the results and
collecting terms of the same order. The residuals are then output
to a file which is edited to become a Matlab m-file.

The key step is to decide at what order in a, Rd and σ to trun-
cate the asymptotic expansions. Trying to go too high in truncation
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order will eventually defeat reduce because of the combinatorial
complexity of the nonlinear residuals. The program grabs all avail-
able cpu time and swap space and fails to terminate. Nonetheless
truncation at quite high order is feasible. The highest order model
considered in this paper is O (|a|6, R3

d, σ
3) , which has 180 terms in

the expansion.

4.2 The numerical iteration in MATLAB

Armed with Matlab expressions for the term-by-term residuals,
we discretise (12) on a vertical grid of n points and perform the
iteration numerically. For example, the Matlab code for the first
residual of the truncation error O (|a|4, R2

d, σ
2) model is:

1 r11=-kc^2*w1+h1-pad(dmf(p1,z),z)-gb(1)*w1+d2f(w1,z);
2 r21=-kc^2*u1+pad(mav(p1,z),z)*i*kc-gb(1)*u1+d2f(u1,z);
3 r31= - rc*w1 + h1*kc^2 - d2f(h1,z);
4 r41=mav(u1,z)*i*kc - dmf(w1,z);
5 bc11= - w1;
6 bc21= - u1;
7 bc31= - h1;
8 r1=[bc11(1);r11(j);bc11(n);bc21(1);r21(j);bc21(n); ...
9 bc31(1);r31(j);bc31(n);r41;0;0];

10 vd=ll(-1)\r1;
11 w1=w1+vd(1:n); u1=u1+vd(n+(1:n));
12 h1=h1+vd(2*n+(1:n)); p1=p1+vd(3*n+(1:n-1));
13 ga(1)=ga(1)+vd(4*n); gb(1)=gb(1)+vd(4*n+1);

This term is a bE−1 term. In lines 1–7 of the code, the four resid-
uals of (11) are evaluated with boundary conditions. In lines 8–10,
the residuals and boundary conditions are assembled into a single
vector and the update vector vd, which is v′1(z), computed. Then
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in lines 11–13 the structure functions w1(z), u1(z), h1(z) and p1(z),
and the constants g1 and ḡ1 are updated. Processing then passes to
the next residual.

The Matlab function ll(m) implements L(mkc) with the ap-
propriate solvability conditions. rc and kc are Rc and kc from (5).
Other Matlab functions are:

d2f(arg,z) computes the second order z-derivative of its argu-
ment;

dmf(arg,z) computes the first order z-derivative of its argument
midway between grid points;

mav(arg,z) computes the average of its argument midway between
grid points;

pad(arg,z) pads each end of its vector argument with NaN.

These functions are simply specified as linear operators in reduce.
Since reduce is given no rule for evaluating them, it passes the
unevaluated expressions directly to the output file. The functions
are then implemented in Matlab using finite differences.

This may seem a complicated procedure—many calculations are
done on each iteration and higher order residuals are very complex.
But in fact, the iteration converges very rapidly. After only five
iterations, the maximum residual is reduced to around 5× 10−13 in
less that five minutes!
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5 Results and error estimates

Once the structure functions, vl(z), are computed in Matlab, the
asymptotic expansions (8) and (10), truncated to some order, are
assembled. These allow computation of the field variables: u, w, θ
and p. All that needs to be specified are the values of the Rayleigh
number R, the Prandtl number σ and the amplitude a. Between
them R and σ specify the nature of the fluid—viscosity, thermal
diffusivity and so forth, and physical factors like the applied tem-
perature gradient and the vertical scale of the containing walls. The
evolution of the system in time is governed by the slow evolution (9)
of the amplitudes, a and b, using the computed values of gl and ḡl

in (10).

In this section we present some illustrative results for different
models, distinguished by the order of their truncation error. We
consider the planform evolution for a high-order model and lastly,
compare the steady-state models pairwise to estimate relative errors
over a region of the (σ, R) parameter space.

5.1 Computed structure functions

Figure 3 shows an example of the computed vertical structure func-
tions, all of which have the expected roughly sinusoidal shape. The
advantage of computing them numerically is that they are as easy
to compute for a high order term as a low order term. A suffi-
cient number of grid points was used to obtain the coefficients to
4 decimal places.
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Figure 4: The velocity field for theO (|a|4, R2
d, σ

2) model at R = 26
and σ = 0·3 . The field was computed for the steady-state amplitude
predicted in (17).

5.2 Model flows

The lowest order model considered was O (|a|4, R2
d, σ

2) , which has
36 terms in its expansion. For illustrative purposes, we chose R =
26 and σ = 0·3 to represent a low Prandtl number fluid above
threshold. One period of the velocity field, computed for the steady-
state amplitude, is shown in Figure 4.

The predicted field of temperature corrections (deviations from
the hydrostatic temperature field) for the same model and param-
eter values is shown in Figure 5 and the pressure corrections in
Figure 6.



5 Results and error estimates C613

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

k
c
 x

z

−
60

−
60

−40

−40

−40

−40
−20

−2
0

−2
0

−20

0 0

0 0

0

0

0

0

0

20

20

20

20

40

4040

60

60

Figure 5: The temperature correction field for the O (|a|4, R2
d, σ

2)
model at R = 26 and σ = 0·3 . Note the ‘keystone’ shape of the cells
as hotter fluid rises above, and cooler fluid sinks below the mid-line.
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Figure 6: The pressure correction field for the O (|a|4, R2
d, σ

2)
model at R = 26 and σ = 0·3 . Corrections are deviations from
the hydrostatic pressure field.
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5.3 Planform evolution and steady-state
amplitude

The planform evolution computed numerically is

∂a

∂t
= g(a, b, R, σ) (16)

= aRd(0·2214− 0·4334 σ − 0·0257 Rdσ + 0·8491 σ2 + 0·1490 Rdσ
2)

+ a2b(−0·0162 + 0·0409 σ − 0·0034 Rdσ − 1·4586 σ2 − 0·0871 Rdσ
2)

+ a3b2(0·0008− 0·0002 Rd − 0·0015 σ + 0·0007 Rdσ − 0·0001 R2
dσ

− 0·0030 σ2 + 0·0002 Rdσ
2 + 0·0001 R2

dσ
2) +O

(
|a|6, σ3, R3

d

)
.

As expected for a supercritical bifurcation, the cubic a2b term gives
nonlinear stabilisation to the linear growth term aRd and a evolves
quickly to a steady-state amplitude as.

The steady-state amplitude is found approximately by setting
∂a/∂t = 0 in (16) and ignoring a3b2 terms to obtain

as ≈

√
Rd

[
0·2214− 0·4434 σ − 0·0257 Rdσ + 0·8491 σ2 + 0·1490 Rdσ2

0·0162− 0·0409 σ + 0·0034 Rdσ + 1·4586 σ2 + 0·0871 Rdσ2

]
.

(17)
The model calculations for this paper were all done at this steady-
state amplitude.

5.4 Model comparisons and errors

For comparison, flow fields for different order models were all calcu-
lated for the same parameter values, R = 26 and σ = 0·3 . Velocity
fields and temperature correction contours for O (|a|6, R2

d, σ
2) are

shown in Figure 7, for O (|a|4, R3
d, σ

3) are shown in Figure 8, and
those for O (|a|6, R3

d, σ
3) are shown in Figure 9.
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Figure 7: The velocity field (green) and temperature correction
contours (blue) for the O (|a|6, R2

d, σ
2) model.
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3) model. Predicted tempera-
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contours (blue) for the O (|a|6, R3
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3) model. This model is very

similar to Figure 8
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Comparing Figures 5 and 7, the temperature contours are very
similar in moving from an O (|a|4) to an O (|a|6) model, so that in-
creasing the order in a has only had a subtle effect. On the other
hand, compare both of these figures with Figures 8 and 9 to gauge
the effect of increasing the order fromO (R2

d, σ
2) to orderO (R3

d, σ
3) .

There is a pronounced difference—Figures 8 and 9 predict a much
less severe temperature gradient inside the rolls and consequently
less of a ‘keystone’ effect. The predicted pressure fields show anal-
ogous effects. Thus increasing the order in Rd and σ has a major
effect on the model predictions.

Lastly, we compare the performance of each the models over
a whole region of the (σ, R) parameter space. The O (|a|4, R3

d, σ
3)

model was chosen as the basis for comparison and 1-norm relative er-
rors for the other models computed relative to it. TheO (|a|4, R3

d, σ
3)

model is itself an approximation to the full system, with unknown
error. So there is a component of error unaccounted for by this pro-
cedure. Nonetheless, the error contours in Figures 10–12 do show
where different truncation error models are discrepant and where
they agree well. They also gives us an idea of the useful parameter
range of each model.

Figures 10–12 show 1-norm relative error contours for the ve-
locity field. Error contours for the temperature and pressure cor-
rection fields are broadly similar to these but have a more complex
structure. We use a relative error of 0·1 or less as an indicator
of good performance. For fluids with very low Prandtl number
(0 < σ < 0·08) all the models deteriorate in performance once the
Rayleigh number gets above R ≈ 25 . For 0·08 < σ < 0·8 , the mod-
els all show good performance up to Rayleigh numbers around 35,
and for σ > 0·8 , up to R ≈ 30 . The deterioration in performance
for higher Rayleigh numbers is most gradual for the highest order
model, O (|a|6, R3

d, σ
3) , as the highest order model is most sensitive.
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6 Conclusion

The method we have outlined for computing structure functions
in high-order asymptotic expansions is both efficient and robust.
Though applied here to Rayleigh-Bénard convection, it is applicable
to perturbation expansions generally. Only hardware limitations
prevent the extension of the order of the expansions further.

We plan to use the present model to investigate the development
of oscillatory instability in roll mode convection which is known to
occur at low Prandtl number.
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