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An efficient iterative scheme for series
solutions to Laplacian free boundary

problems
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Abstract

Non-linear Laplacian free boundary problems arise in
many places in the physical sciences and engineering. Typi-
cal applications include locating the water table in ground-
water problems, and fully non-linear problems such as flow
over topography. Analytic series methods are used to solve
these problems by iteratively improving an initial estimate
of the free boundary location — at each step, the prob-
lem reduces to solving a known boundary problem. As the
boundary geometry is not regular, the series coefficients at
each iteration are obtained by solving a matrix equation,
instead of using an orthogonality relationship. The compo-
nents of the matrix equations are inner products that result
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from minimising the boundary errors in the least squares (or
L2 norm) sense. As the size of the (normal) matrices gen-
erated are relatively small, most of the computational effort
is spent evaluating these inner products. In this paper, an
efficient method is presented to evaluate these integrals that
result in an order of magnitude increase in the overall ef-
ficiency of the solution process. This increase in efficiency
does not come at the cost of accuracy, after suitable modifi-
cations are made to the iterative process.
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1 Introduction

Solutions for Laplacian free boundary problems are required in a
large number of practical applications. Free boundary problems are
usually very difficult to solve, as the location of one (or more) of
the boundaries has to be determined as part of the solution process.
Problems of this type include steady seepage through an aquifer and
fully nonlinear flow over topography. Typical solution methods for
arbitrarily shaped flow domains are iterative numerical schemes such
as the Boundary Integral Equation Method (biem) [5, 1]. In these
methods, an initial estimate of the free boundary location is updated
using one of the free boundary conditions as a cost function. How-
ever, analytic series methods can also be used to provide accurate,
continuous solutions for the flow field. The series coefficients are ob-
tained using least squares methods applied to non-orthogonal basis
functions. Solutions thus obtained have all the advantages inherent
in analytic solutions, including exact maximum error bounds [3].

Steady seepage problems have been solved using analytic series
methods for arbitrarily shaped flow domains [6]. This method has
also been used on more difficult seepage problems, where steady so-
lutions can be much harder to obtain [8, 9]. The process consists of
iteratively updating an initial estimate of the water table location,
in the same fashion as the numerical schemes, until a (preset) error
tolerance is met. However, in all of these cases, the free bound-
ary conditions are linear, and the free boundary varies slowly and
smoothly along its length. Consequently, only ten to twenty terms
are necessary in the truncated series to ensure an accurate solution,
and the iterative scheme usually converges in ten to fifty iterations.

Solutions for supercritical flow over topography have also been
obtained using analytic series methods [7]. Free boundary problems
of this type are much more difficult to solve than seepage problems,
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as the free boundary condition is genuinely nonlinear and cannot be
linearized using the stream function, as is the case for the steady
water table [6]. In addition, subcritical ‘lee wave’ solutions vary
strongly along the length of the free surface, and in the limiting
cases the wave crests are sharply pointed. For problems of this
type, 100 to 150 terms are necessary to ensure an accurate series
solution at each iterative step, and the iterative process itself may
take hundreds of iterations.

Both the numerical and analytic series schemes require relatively
large amounts of computational time to resolve the free boundary
for the more difficult problems. Both methods involve generating
and solving large systems of equations at each step of the iterative
process. Typical n × n matrix sizes for the biem are n ≈ 300–400,
whereas for the analytic series methods n ≈ 100–150. Although the
size of the matrices generated using the analytic series method are
significantly smaller than for biem, there is a significantly larger
amount of computational time required to generate each matrix en-
try. Each matrix entry consists of an inner product integral which
has to be evaluated numerically in nearly all cases. Consequently,
the series methods usually take more time at each iteration than
biem. However, the analytic series method usually requires fewer
iterations to converge than biem. Note that in this paper an itera-
tion is called a solution of the matrix equations, not an iteration of
Newton’s method or some similar optimization scheme.

An approximate interpolation approach [4] can be used on the
boundary conditions, thus negating the need for the inner prod-
ucts in the least squares series method. The analytic nature of
the solution is still retained, as the truncated series still satisfies
Laplace’s equation and some of the boundary conditions exactly.
However, the boundary errors are somewhat poorer, and to achieve
the same accuracy as the least squares method, the number of terms
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in the series has to be doubled. This results in similar sized ma-
trices to biem, and also causes a loss of accuracy in the derivatives
of the series solution, necessary to obtain velocity profiles in the
solution domain.

In this paper, an interpolation method is used to replace the
inner product integrals used in the least squares series method. As
a consequence, most of the features of the pure least squares series
solution are preserved. In particular, the boundary errors are not
significantly larger than for the pure least squares method. Conse-
quently, the same number of terms in the truncated series solution
is appropriate for both methods. However, the matrices used at
each step in the iterative process can be generated in constant time,
reducing the computational complexity by at least an order of mag-
nitude. In Section 2, a brief description of the salient features of the
series solution method used at each iterative step is provided. The
eigenfunction expansion approach used to represent the series coef-
ficients is detailed in Section 3. Then the least squares method used
to evaluate the expansion coefficients is given in Section 4, and the
interpolation based approach in Section 5. Finally, the boundary
errors and computational times for both approaches are compared
and discussed in Section 6.

2 Brief problem description

In this section, a brief summary of the mathematical problem for-
mulation that is directly relevant to each iterative step of the series
method is presented. The specific formulation used is for incom-
pressible fluid flowing over an obstacle with uniform upstream ini-
tial velocity—full details of the problem formulation can be found
in [1] or [2]. The problem reduces to solving Laplace’s equation for
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a stream function Ψ(x, y):

∇2Ψ(x, y) = 0 , (1)

subject to the boundary conditions:

Ψ(x, y) = 0 on y = B(x) , (2)

Ψ(x, y) = 1 on y = η(x) , (3)

where y = B(x) and y = η(x) are the bottom and top boundaries,
respectively. After truncating the infinite flow domain to the inter-
val x ∈ [−L,L] , where L is chosen large enough to capture most of
the flow characteristics, the side boundary conditions become

Ψ(−L, y) = y , Ψ(L, y) = ay , (4)

where a is the reciprocal of the fluid height downstream.

The series method is directly applicable when the side bound-
ary conditions are homogeneous. Thus the original problem is now
transformed to a related function ψ(x, y), so that homogeneous
boundary conditions exist at x = ±L :

Ψ(x, y) = ψ(x, y) + y +
(x+ L)

2L
(a− 1)y . (5)

The problem then reduces to solving

∇2ψ(x, y) = 0 , (6)

subject to the homogeneous side boundary conditions

ψ(−L, y) = ψ(L, y) = 0 (7)

and

ψ[x,B(x)] = −B(x)− (x+ L)

2L
(a− 1)B(x) = hb(x) , (8)

ψ[x, η(x)] = 1− η(x)− (x+ L)

2L
(a− 1)η(x) = ht(x) . (9)
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Equations (6) to (9) represent the transformed problem, which is
now solved assuming the free surface location has been estimated.
Details of the functional approximations of the free surface η(x)
are given in [2], and the iterative method used to update the free
boundary location is given in [7]. The cost function used for these
updates is the integrated form of the momentum equation, that is,
the Bernoulli equation, which when evaluated on the free surface
yields

1

2
F 2

(∂Ψ

∂x

)2

+

(
∂Ψ

∂y

)2
+ η(x) =

1

2
F 2 + 1 on y = η(x) . (10)

F is the nondimensional Froude number which characterises whether
the flow regime is supercritical, critical or subcritical.

2.1 Analytic series solution

After applying the method of separation of variables to (6), the
series solution is

ψ(x, y) =
∞∑

n=1

αnun(x, y) + βnvn(x, y) ,

where

un(x, y) = sinh
(
nπy

2L

)
sin

(
nπ(x+ L)

2L

)
,

vn(x, y) = cosh
(
nπy

2L

)
sin

(
nπ(x+ L)

2L

)
.

Note that ψ(x, y) satisfies Laplace’s equation (6) and the side bound-
ary conditions (7) exactly. The constants αn and βn are determined
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using the upper and lower boundary conditions (8), (9). Here

hb(x) =
∞∑

n=1

αnu
b
n(x) + βnv

b
n(x) , (11)

ht(x) =
∞∑

n=1

αnu
t
n(x) + βnv

t
n(x) , (12)

where ub
n(x) = un[x,B(x)] , ut

n(x) = un[x, η(x)] , etc. At this point
in the solution process the classical approach breaks down. When
the bottom and top boundary geometries B(x) and η(x) are con-
stant, an orthogonality relationship can be used to determine the
series coefficients. However, this is clearly not the case here, and a
different approach must be used.

3 Eigenfunction expansions

Although the traditional approach (based on eigenfunction expan-
sions) can’t be used to evaluate the series coefficients, this method
can be extended to non-orthogonal basis functions. Consider the
bottom boundary condition (11). Assuming that ub

n(x), hb(x) ∈
span

{
vb

1(x), v
b
2(x), . . .

}
, then ub

n(x) and hb(x) are expanded in terms

of vb
i (x), i = 1, 2, . . .:

ub
n(x) =

∞∑
i=1

kub
inv

b
i (x) , n = 1, 2, . . . (13)

hb(x) =
∞∑

n=1

khb
n v

b
n(x) , (14)

where kub
in and khb

n are the expansion coefficients. Substituting into
the bottom boundary condition (11),

∞∑
n=1

khb
n v

b
n(x) =

∞∑
n=1

[
αn

( ∞∑
i=1

kub
inv

b
i (x)

)
+ βnv

b
n(x)

]
. (15)
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After some re-arrangement, this becomes

∞∑
n=1

( ∞∑
i=1

kub
niαi − khb

n + βn

)
vb

n(x) = 0 . (16)

Assuming the basis functions vb
n(x), i = 1, 2, . . . are linearly inde-

pendent, then

βn = khb
n −

∞∑
i=1

kub
niαi , n = 1, 2, . . . . (17)

A similar procedure is used for the top boundary condition (12).
First, let

ut
n(x) =

∞∑
i=1

kut
inv

t
i(x) , n = 1, 2, . . . (18)

ht(x) =
∞∑

n=1

kht
n v

t
n(x) , (19)

where kut
in and kht

n are the expansion coefficients. After some manip-
ulation, the top boundary condition (12) becomes

∞∑
i=1

(
kut

ni − kub
ni

)
αi = kht

n − khb
n , n = 1, 2, . . . . (20)

Equations (17) and (20) are two (infinite) sets of linear relation-
ships for αn and βn. In practice, the series solution is truncated
after a sufficient number of terms have been included. Then

ψ(x, y) ≈ ψN(x, y) =
N∑

n=1

anun(x, y) + bnvn(x, y) , (21)

where ψN , an and bn are estimators of ψ, αn and βn respectively.
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The N × N matrix equations that need to be solved to obtain
[a]i = ai , [b]i = bi are(

Kut −Kub
)
a = kht − khb , b = −khb −Kuba , (22)

where Kut, Kub, kht, khb are matrices of expansion coefficients:

[Kut]ij = kut
ij , [Kub]ij = kub

ij , [kht]i = kht
i , [khb]i = khb

i , (23)

for i, j = 1, . . . , N .

4 Least squares estimation

The matrices of eigenfunction expansion coefficients (23) must be
evaluated before the series coefficients an and bn are determined
using (22). The direct approach is to use least squares to minimize
the error in the eigenfunction expansions (13), (14), (18) and (19).
These expansions are truncated after N terms, and then the squared
residual error εub

n of (13) is minimised:

εub
n =

∫ L

−L

(
ub

n(x)−
N∑

i=1

kub
inv

b
i (x)

)2

dx . (24)

After taking partial derivatives and setting the result to zero, the
Normal equations for the expansion coefficients [Kub]ij = kub

ij are:

V b
v K

ub = V b
u , where [V b

v ]ij =
〈
vb

i , v
b
j

〉
, [V b

u ]ij =
〈
ub

i , v
b
j

〉
,

(25)
where the inner product

〈p, q〉 =
∫ L

−L
p(x)q(x) dx . (26)
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Similar sets of equations are obtained for the other expansion
coefficients [khb]i = khb

i , [Kut]ij = kut
ij , [kht]i = kht

i :

V b
v khb = hb

v, where [V b
v ]ij =

〈
vb

i , v
b
j

〉
, [hb

v]i =
〈
hb, vb

i

〉
, (27)

V t
vK

ut = V t
u , where [V t

v ]ij =
〈
vt

i , v
t
j

〉
, [V t

u ]ij =
〈
ut

i, v
t
j

〉
,(28)

V t
v k

ht = ht
v , where [V t

v ]ij =
〈
vt

i , v
t
j

〉
, [ht

v]i =
〈
ht, vt

i

〉
. (29)

At each step in the iterative process, Kut, kht are evaluated.
Note that the expansion coefficients Kub and khb need only be eval-
uated once, as the bottom boundary does not change with each
iteration. In practice, the inner products are calculated using nu-
merical quadrature routines. All of these integrals are oscillatory,
and can be computationally expensive to evaluate. Typically each
integral will take of O(N) time, and thus generating the matrix en-
tries will take O(N3) time to evaluate. For large N (> 50), this
becomes computationally inefficient.

5 The interpolation approach

An interpolation approach has been used directly on the top and
bottom boundary conditions (11), (12) for seepage problems [4].
Using this method, the series coefficients are forced to satisfy the
top and bottom boundary conditions at N points xi ∈ (−L,L) ,
i = 1, . . . , N . That is,

hb(xi) =
N∑

n=1

anu
b
n(xi) + bnv

b
n(xi) , (30)

ht(xi) =
N∑

n=1

anu
t
n(xi) + bnv

t
n(xi) , (31)
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for i = 1, . . . , N . This leads directly to a set of matrix equations
for [a]i = ai and [b]i = bi :

F uba + F vbb = f b , (32)

F uta + F vtb = f t , (33)

where

[F ub]ij = ub
j(xi) , [F vb]ij = vb

j(xi) , [f b]i = hb(xi) , (34)

[F ut]ij = ut
j(xi) , [F vt]ij = vt

j(xi) , [f t]i = ht(xi) , (35)

The series coefficients a and b are obtained from(
F ut − F vt

(
F vb

)−1
F ub

)
a = f t − F vt

(
F vb

)−1
f b , (36)

b =
(
F vb

)−1
f b −

(
F vb

)−1
F uba . (37)

The main advantage of this approach is that the entries in ma-
trices F ut, F vt and f t are all generated in constant time, and (com-
pared to the inner products case in the previous section) the matri-
ces themselves are generated in constant time. Unfortunately, this
method is not accurate enough, and twice as many terms are used to
obtain the same accuracy. Although generating the necessary ma-
trices is still much more efficient than for the least squares method,
the matrices become too large to ignore the cost of the matrix in-
versions needed to solve for the series coefficients. In addition, the
derivatives needed for the Bernoulli cost function tend to be much
more inaccurate. This situation is not acceptable, as the inaccu-
racies in the cost function leads to a significant degradation in the
performance of the iterative process. In some cases the iterative
scheme will not converge at all.
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5.1 Discrete least squares and interpolation

An alternative approach is to use discrete least squares at the eigen-
function expansion level. Consider the expansion equation (13)
for kub

lj , with the error minimised at M ≥ N discrete points xi ,
i = 1, . . . ,M :

ub
j(xi) =

N∑
l=1

vb
l (xi)k

ub
lj , i = 1, . . . ,M , j = 1, . . . , N . (38)

In matrix form, the over determined system is given by

U b︸︷︷︸
M×N

= V b︸︷︷︸
M×N

K̂ub︸︷︷︸
N×N

, (39)

where, for i = 1, . . . ,M , j = 1, . . . , N :

[U b]ij = ub
j(xi) , [V b]ij = vb

j(xi) , [K̂ut]ij = k̂ut
ij . (40)

The standard discrete least squares method is now used to minimize

the error at the M points. That is, multiply (39) by
(
V b
)T

:(
V b
)T
V bK̂ub =

(
V b
)T
U b . (41)

This reduces the overdetermined system to a squareN×N system of
equations that is readily solved for the expansion coefficients. Note
that when M = N , this method reduces to interpolation, which also
minimizes the least squares error—that is, the error at the N points
is zero.

6 Results and conclusions

The accuracy and efficiency of the least squares and interpolation
methods are compared by focusing on a particular problem. Ini-
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Figure 1: A typical free surface profile.

tially, consider a fully developed wave profile for one of the limit-
ing cases—that is, approaching the maximum obstacle height. The
wave profile is given in Figure 1. For the interpolation approach,
M = N equally spaced points were used. This minimum number of
points has been deliberately chosen so that the worst behaviour of
the method is apparent.

The accuracy of both methods is given by the root mean square
(rms) errors in the top and bottom boundary conditions (2) and (3),
as well as the errors in the cost function (10). Consider the stream
function Ψ(x, y) approximated by the truncated series ΨN(x, y)
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Figure 2: rms errors versus N , the number of terms in the series.

along y = f(x) , where f(x) is the top or bottom boundary. The
rms error

εf =

[
1

2L

∫ L

−L
(Ψ(x, f(x))−ΨN(x, f(x)))2 dx

]1/2

. (42)

A similar equation for the rms error in the cost function is also
readily available.

Figure 2 shows the rms errors of the least squares and interpo-
lation methods for the wave profile given in Figure 1. The number
of terms in the series varies from two to one hundred. For each rms
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Figure 3: CPU times for interpolation and least squares method

error type, the behaviour of the two methods is very similar. The
series appears to converge as the number of terms in the series in-
creases. This is not totally unexpected as an increase in the number
of interpolation points effectively improves the discrete least squares
approximation to the continuous case. The conclusion is that the
interpolation method gives sufficiently accurate solutions compared
to the continuous least squares method, without having to increase
the number of terms in the series.

Next, the actual cpu execution times necessary to calculate the
series solution, for different numbers of terms in the series, are com-
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pared. Figure 3 shows the cpu times taken to generate a solution
for the wave profile in Figure 1, for N varying from two to one
hundred (the times given have been obtained using the unix time
command). Clearly, the interpolation method is at least one order
of magnitude more efficient than the least squares method, and is
more like two to three orders of magnitude faster. To reinforce this
point, consider the times taken for each method, for ten, fifty and
one hundred terms in the series solution. The interpolation times
are 2.35, 2.55 and 3.10 respectively, whereas the corresponding times
for the least squares approach are 23.4, 697.5 and 4463.7 .

Finally, the two methods are compared as they iteratively up-
date a free boundary problem. For this analysis, N = 100 terms
are used in both series solutions. The starting profile of the free
surface is constant: η(x) = 1 . Figure 4 shows the cost function and
top boundary errors for both methods. See that both methods are
converging to the same wave profile. Note that the very low errors
at the start of the iterative sequence are due to the constant ini-
tial profile—with no variation in the free surface, the series solution
satisfies the boundary conditions almost exactly.

In conclusion, an interpolation approach has been presented that
improves the efficiency of the analytic series method by at least an
order of magnitude, without significantly degrading the accuracy.
Note that all the essential features of the analytic series solution are
maintained. In particular, the series solution still satisfies Laplace’s
equation and some of the boundary conditions exactly, and thus
exact maximum error bounds are still immediately available. Al-
though arguably the interpolation approach is accurate enough, the
iterative scheme can be slightly modified to produce a solution that
is as accurate as those obtained using the full least squares imple-
mentation. All that needs to be done is to iterate to convergence
using the interpolation approach, and then perform an extra itera-
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Figure 4: rms errors during 50 iterations on a free boundary prob-
lem



References C662

tion or two using the full least squares method.
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