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Derive boundary conditions for holistic
discretisations of Burgers’ equation
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Abstract

I previously used Burgers’ equation to introduce a new
method of numerical discretisation of pdes. The analysis is
based upon centre manifold theory so we are assured that
the discretisation accurately models all the processes and
their subgrid scale interactions. Here I show how bound-
aries to the physical domain may be naturally incorporated
into the numerical modelling of Burgers’ equation. We in-
vestigate Neumann and Dirichlet boundary conditions. As
well as modelling the nonlinear advection, the method natu-
rally derives symmetric matrices with constant bandwidth to
correspond to the self-adjoint diffusion operator. The tech-
niques developed here may be used to accurately model the
nonlinear evolution of quite general spatio-temporal dynam-
ical systems on bounded domains.

∗Dept. Maths & Computing, University of Southern Queensland,
Toowoomba, Queensland 4352, Australia. mailto:aroberts@usq.edu.au

0See http://anziamj.austms.org.au/V44/CTAC2001/Robe for this article,
c© Austral. Mathematical Soc. 2003. Published 1 April 2003. ISSN 1446-8735

mailto:aroberts@usq.edu.au
http://anziamj.austms.org.au/V44/CTAC2001/Robe


Contents C665

Contents

1 Introduction C665

2 Holistic discretisation of Burgers’ equation in the
interior C667

3 Dirichlet boundary conditions applied at a grid
point C673

4 Apply Neumann boundary conditions at a mid-
point C678

5 Conclusion C681

A Computer algebra derives different boundary dis-
cretisations C682

References C685

1 Introduction

We discuss the discretisation of boundary conditions for partial dif-
ferential equations. The holistic discretisation [7] we use herein is
based upon the support centre manifold theory gives to the nonlin-
ear dynamics on finite grid spacing. We expect such discretisation
will have good stability and high accuracy on coarse grids because
it systematically accounts for subgrid scale interactions. To date we
have considered periodic problems [7, 3, 4, 9] and their initial con-
ditions [8]. Here we show how to incorporate a couple of boundary
conditions into the analysis.
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Study Burgers’ equation: As an illustrative example we restrict
attention to the one-dimensional spatial discretisation of Burgers’
equation

∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
, (1)

which contains the important mechanisms of diffusion, uxx , and
nonlinear advection, uux . As example boundary conditions we con-
sider the important cases of Dirichlet fixed field, §3, and Neumann
fixed flux boundary conditions, §4. The same techniques may be
straightforwardly extended to other partial differential equations,
other boundary conditions and higher spatial dimensions.

Discretise on finite size elements: The analysis is based upon
dividing the domain into finite sized elements, each separated from
their two neighbours by specially crafted artificial internal boundary
conditions (ibcs). The form of the ibcs (3–4) generates a discreti-
sation in the interior of the domain (§2) which is not only linearly
consistent, as proved in [9], but which appears to be also nonlin-
early consistent to high order. This observation is based upon this
analysis of Burgers’ equation and work in progress on the Kuramoto-
Sivashinsky equation; further research is needed to prove it in gen-
eral.

Focus on boundary conditions: Here we investigate the dis-
cretisation near the boundary of the domain. Boundary conditions
are incorporated simply by replacing an ibc of an end element by
a variant of the actual boundary condition: the Dirichlet bound-
ary condition of fixed field u is implemented as (11); the Neumann
boundary condition of fixed flux ux is (19). The computer algebra
of §A readily computes the effect these boundary conditions have
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on the discretisation near the boundary. Novel features of this dy-
namical systems approach are the following:

• theoretical support is provided on finite grid spacing h as ex-
plained in [7, 9, e.g.];

• the discretisation has a consistent bandwidth across the whole
domain including near the boundaries;

• high order discretisations are expressed in terms of the ma-
trices of the basic, second order, centred difference operators,
leading to appropriately symmetric discretisations of the dif-
fusion operator, for example;

• time variations of boundary values, say a(t), not only has a
direct effect but also involves time derivative factors, such as ȧ,
which are more important on coarser grids due to the time it
takes changes in a boundary value to diffuse into the element.

2 Holistic discretisation of Burgers’

equation in the interior

We consider Burgers’ equation (1) on some finite domain in x. Place
grid points xj equi-spaced across the domain with constant spac-
ing h, and correspondingly define uj = u(xj, t), that is, uj is the
evolving field u evaluated at the jth grid point. Divide the domain
into m elements with a grid point at the centre of each. Follow-
ing [9] to apply the theory we artificially create each element using
internal boundary conditions (ibcs) in the discrete form

µxδxvj(x, t) = γµδ uj and δ2
xvj(x, t) = γδ2uj , (2)
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evaluated at x = xj where vj denotes the field in the jth element.
Throughout this work we use discrete operators [5, p65, e.g.]:

• shift operator, Euj = uj+1 and Exu = u(x + h, t) .

• centred difference, δuj = (E1/2 − E−1/2)uj = uj+1/2 − uj−1/2

and δxu = (E
1/2
x − E

−1/2
x )u = u(x + h/2, t)− u(x− h/2, t) ;

• and centred mean, µuj = 1
2
(E1/2 + E−1/2)uj = 1

2
[uj+1/2 +

uj−1/2] and µxu = 1
2
(E

1/2
x + E

−1/2
x )u = 1

2
[u(x + h/2, t) + u(x−

h/2, t)] .

Thus, for example, µδ uj/(2h) approximates the first derivative at xj,
whereas δ2uj/h

2 approximates the second derivative. As shown
in [9], the particular choice of ibcs (2) ensures that the resultant
finite difference scheme is consistent to high order in h as the grid
size h → 0 . In this section we repeat the construction of the holistic
discretisation, following [7], away from the domain boundaries via
centre manifold theory but with a new and convenient form of these
discrete ibcs.

Internal boundary conditions: In actually developing discrete
models the ibcs may take any of many equivalent forms [7, e.g.]. In
later sections we investigate the discretisation near a boundary of
the domain: the element adjacent a boundary has one real bound-
ary and one artificial internal boundary. Thus it is appropriate to
rewrite the two ibcs in (2) in the form of two conditions, one at the
left edge of each internal element, and one at the right. Recall that
the difference operators µ± 1

2
δ = E±1/2 [5, p65, e.g.] so that to the

first ibc in (2) add/subtract half the second to give the equivalent
ibcs

δxvj(x, t) = γδuj−1/2 at x = xj−1/2 , (3)
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and δxvj(x, t) = γδuj+1/2 at x = xj+1/2 . (4)

The ibc (4) is to hold at the right-hand side of each element and
the ibc (3) is to hold at the left. The introduced parameter γ,
when non-zero, couples each element to its neighbour. When γ = 0
these ibcs effectively insulate each element from its neighbours and
forms the basis of the centre manifold analysis; whereas when γ = 1
they assert that the field in the jth element when extended into the
surrounding elements has the same differences centred across each
internal boundary as that given by the grid point values. Thus eval-
uating the model at γ = 1 forms the relevant discretisation. These
ibcs apply to all elements except for the leftmost and rightmost el-
ements, the ones adjacent to the boundary: in the leftmost element
the left-hand ibc, (3) with j = 1, is replaced by the actual bound-
ary condition; in the rightmost element the right-hand ibc, (4) with
j = m, is replaced by the actual boundary condition. In this paper
I analyse the left boundary of the domain—discretisations near the
right boundary are similar by symmetry.

Centre manifold theory supports discretisation: the theory
addresses linear and nonlinear perturbations of linear dynamical
systems. Here the nonlinear advection uux and the coupling linear
ibcs (3–4) perturb the linear dynamics of diffusion, ut = uxx , within
insulated finite elements. Abstractly the theory [1, 2, e.g.] considers
dynamics in the form

ut = Lu + f(u, γ) , (5)

where u(t) is the evolving system state, L is a linear operator, and
f are the perturbation terms. If about any fixed point, usually taken
to be u = 0 , the spectrum of the linear operator L is composed of
m eigenvalues with zero real part, and the rest of the spectrum has
negative real part and is bounded away from zero, say less than −β,
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then centre manifold theory generates useful models of the dynam-
ics. Here, the spectrum of linear diffusion within each element is
one zero eigenvalue, corresponding to conservation of u in each insu-
lated element, and the other eigenvalues less than −β = −π2/(4h2) .
Hence we know that, linearly, all initial conditions decay exponen-
tially quickly to a state where all m conserved neutral modes are
constant, and all other modes zero. Centre manifold theory asserts
that in the presence of perturbations, this is still true but that the
decaying modes are forced by the neutral modes through the per-
turbations and that the neutral modes evolve slowly through the
coupling of the perturbations. We invoke the following three centre
manifold theorems (described rather roughly for simplicity). Given
the system (5) with linear operator L as described above and smooth
enough perturbation f , then:

1. in some neighbourhood of the origin, an m-dimensional centre
manifold exists parametrised by amplitudes of the m neutral
modes and the amplitudes evolve in time. Here, in the jth el-
ement the field

u(x, t) = vj(uj , x, γ) such that u̇j = gj(uj , γ) ; (6)

that is, a dynamic model exists in terms of the grid val-
ues uj, a model which resolves the subgrid scale field, u(x, t) =
vj(uj , x, γ) .

2. further, the model is relevant because all bounded solutions
in a neighbourhood of the centre manifold are exponentially
quickly attracted to a solution of the model, like O(e−β′t)
where β′ ≈ β . Thus here if we construct the centre manifold
accurately enough we know that our model would genuinely
capture all the bounded long term dynamics of the original
system. This applies at finite grid spacing h and is a novel
guarantee of the fidelity of a discretisation.
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3. lastly, the expressions (6) describing the centre manifold and
the evolution thereon may be found simply by substituting (6)
into the original system (5), then solving to some asymptotic
order. The error in the expressions is then of the same order
as the residuals of the equation.

These are the key centre manifold theorems of existence, relevance
and construction. Here they guarantee a discretisation exists which
completely models the long term dynamics, and which we can find
by approximately solving Burgers’ equation through (6). The only
caveat is that in this application we have to evaluate the perturbing
influences at γ = 1 whereas the theory only asserts that there is
a neighbourhood of γ = 0 in which the results hold. However, for
many asymptotic expansions, one is a small enough number.

The interior is straightforward: In the interior of the domain
the physical boundaries have no influence upon the discretisation.
Each element in the interior has ibcs (3) and (4). Executing the
computer algebra program in Appendix A, adapted from [7], the
subgrid structure of the solution field u(x, t) is, in terms of ξ =
(x− xj)/h,

vj = uj + γ
[
ξµδuj + 1

2
ξ2δ2uj

]
+ γ2

[
1
6
(ξ3 − ξ)µδ3uj + 1

24
(ξ4 − ξ2)δ4uj

]
+ γh1

6
(ξ3 − ξ)ujδ

2uj +O(‖u‖4 + γ4) . (7)

This expression gives the field u everywhere in the interior as a func-
tion of the grid values uj—it describes the low-dimensional centre
manifold in the original state space. The inter-element coupling
and the nonlinearities cause these grid values to evolve. By requir-
ing Burgers’ equation (1) be satisfied to some order of perturbation,
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the evolution on this centre manifold forms the holistic discretisa-
tion in the interior to the same order of error:

u̇j =
1

h2

[
γδ2uj −

γ2

12
δ4uj +

γ3

90
δ6uj

]
− 1

h
uj

[
γµδuj −

γ2

6
µδ3uj

]
+

γ2

24h
(δ2uj µδ3uj + δ4uj µδuj)

+
γ

12
u2

jδ
2uj +O(‖u‖5 + γ5) . (8)

As discussed previously [7] when the coupling parameter γ = 1: the
first line gives successive approximations to the diffusion term uxx;
the second line gives approximations to the nonlinear advection;
and lastly, the cubic nonlinear term, u2

jδ
2uj in the last line above,

accounts for subgrid scale interactions between the advection and
diffusion and acts to stabilise the numerical model. Higher-order
terms are easily found by the computer algebra of Appendix A but
for clarity are not presented here.

These discretisations are also consistent: In the limit as the
grid spacing h → 0 higher-order discretisations have the equivalent
pde

∂u

∂t
= γ

[
−u

∂u

∂x
+

∂2u

∂x2

]
+

h2

12
γ(1− γ)

[
uxxxx − 2uuxxx + u2uxx

]
+

h4

720
γ(1− γ)

[
2γ(−5u2

xuxx − 9uu2
xx − 25uuxuxxx

+ 15uxxuxxx + 15uxuxxxx − 2u2uxxxx)

+ (1− 4γ)(2∂6
xu− 6u∂5

xu + 5u2∂4
xu)

]
+O(‖u‖4, γ4, h6) . (9)

See that upon substituting γ = 1 to recover a discretisation for the
Burgers’ equation (1), we would find an equivalent pde to an error
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O(h6, ‖u‖4). Analogous lower order discretisations are obtained, as
promised by the analysis in [9], when we truncate the discretisa-
tion (8) to lower orders in the coupling parameter γ. But observe
the new feature that the discrete form (3–4) of the ibcs lead to dis-
cretisations which are not only linearly consistent, as assured in [9],
but are also nonlinearly consistent. Further research is needed to
establish nonlinear consistency in general.

3 Dirichlet boundary conditions

applied at a grid point

Consider the case of Dirichlet conditions on the boundary of the
domain of prescribed u at a grid point; without loss of generality
say

u = a(t) at x = x0 . (10)

This boundary condition is included in the analysis simply by re-
placing the left-hand ibc in the leftmost element, (3) with j = 1,
by (as if u0 = a in (3))

δxv1(x, t) = γ(u1 − a) at x = x1/2 . (11)

(Implicitly the first element then extends from x0 = x1 − h to x1 +
h/2.) When the coupling parameter γ = 0 this ibc effectively insu-
lates the first element from the conditions at the domain boundary.
However, when γ = 1, since vj(xj, t) = uj, this reduces to (10) by
requiring v1(x0, t) = a . Hence, the centre manifold derivation is
based on γ = 0 as explained in [7] and evaluated at γ = 1 to obtain
a discretisation of Burgers’ equation.

Evolution near the boundary: We solve for the subgrid fields
and evolution in the elements near the boundary, j = 1, 2, . . . . The
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computer algebra program in Appendix A implements this bound-
ary condition when dirichlet:=1 . The influence of this specified
boundary value affects a number of elements near the boundary
equal to the order of γ retained in the analysis, nothing else: in the
interior the discretisation is (8); whereas for elements the near the
boundary and for errors O(‖u‖5 + γ5) we find the evolution to be
of the form u̇1

u̇2

u̇3

 =
1

h2
(Du + f d)−

1

h
(UCu + gc(u) + f c)

+
(
U2Bu + f b

)
+O(‖u‖5 + γ5) , (12)

where U = diag(u1, u2, u3) is the diagonal matrix of grid velocities
and the three parts of the right-hand side represent respectively the
discretisation of the diffusion, the nonlinear advection, and the lead-
ing order interaction between advection and diffusion. These parts
include the forcing due to the time dependent boundary value a.
Here the various terms are found to be:

D = γ

 −2 1
1 −2 1 · · ·

1 −2 1


− γ2

12

 5 −4 1
−4 6 −4 1 · · ·

1 −4 6 −4 1


+

γ3

90

 −14 14 −6 1
14 −20 15 −6 1 · · ·
−6 15 −20 15 −6 1

 +O(γ4)(13)

C =
γ

2

 0 1
−1 0 1 · · ·

−1 0 1
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− γ2

12

 0 −2 1
2 0 −2 1 · · ·

−1 2 0 −2 1


+O(γ3) (14)

gc =
γ2

24

 1
2
uTG1u

1
2
uTG2u

1
2
uTG3u

 where G1 =

 2 5 −1
5 −6 1
−1 1 0

 ,

G2 =


6 −5 0 0
−5 0 5 −1
0 5 −6 1
0 −1 1 0

 ,

G3 =


0 −1 1 0 0
−1 6 −5 0 0
1 −5 0 5 −1
0 0 5 −6 1
0 0 −1 1 0

 , (15)

and B = 1
12
D+O(γ). Denote by D the matrix appearing above in D

linear in γ and then row extended across the interior of the domain:
D is the matrix of the second-order centred approximation to the
second derivative, δ2. Observe that the order γ2 and γ3 matrices in
D simply correspond to D2 and D3. Thus the discretisation of the
diffusion term, across the entire domain including the near bound-
ary elements, is simply γδ2− γ2

12
δ4 + γ3

90
δ6 seen in the first line of the

interior discretisation, (8), but with the matrix D replacing the cen-
tred difference δ2. Thus this approach generates an appropriately
symmetric discretisation of the self-adjoint diffusion term uxx. The
nonlinear stabilisation term, U2Bu, also corresponds to replacing δ2

in (8) by D. Similarly, denote by C the matrix appearing above in
C linear in γ (including the factor 1

2
) and then row extended across

the interior of the domain: C is the matrix of the second-order cen-
tred approximation to the first derivative, µδ. Observe that the
order γ2 matrix in C is (DC + CD)/2 corresponding to the average
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of different permutations of the centred difference operators µδ3.
Thus again the discretisation of the advection terms across the en-
tire domain is the interior discretisation, γµδ − γ2

6
(µδδ2 + δ2µδ)/2,

with the truncated C and D replacing the difference operators µδ
and δ2 respectively. Additional terms represented by gc for the
discretisation of the advection correspond to the nonlinear higher
order term γ2

24h
(δ2uj µδ3uj + δ4uj µδuj) in the model (8). These are

pleasing patterns.

The discretisation has constant bandwidth: See that by trun-
cating to a fixed power of the inter-element coupling parameter γ
we obtain a discretisation that has constant bandwidth across the
whole domain. This constant bandwidth will always be derived in
this holistic approach, see for another example the Neumann bound-
ary conditions in the next section, because the truncation at a fixed
power of the inter-element coupling γ controls how many neighbour-
ing elements interact with any given element. Although there is a
lower order (in h) of consistency near the domain boundaries, the
support by centre manifold theory is the same across the whole do-
main. As discussed in [7], the reason for this support is that the
theory applies to the solutions of Burgers’ pde (1) in the entire
domain, not just in some locale.

Boundary forcing lags on finite grids: Now consider the forc-
ing from the boundary. Using a = (a, h2ȧ), it is

f d =


γ + γ2

6
+ γ3

18
− γ

12
− γ2

45
− γ3

112

−γ2

12
− 2γ3

45
+ γ2

90
+ γ3

140

γ3

90
− γ3

560

a +O(γ4, ä) , (16)
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f c = γ

 1
2
u1 − 1

24
u1

0 0
0 0

a

+
γ2

24

 4u1 + 3a 1
15

(7u1 − 2u2 − 9a) + 5
168

h2ȧ
−(u1 + u2)

2
15

(u1 + u2)
0 0

a

+O(γ3, ä) , (17)

f b =
γ

12

 u2
1 − 1

15
u2

1

0 0
0 0

a +O(γ2, ä) . (18)

See that this holistic approach not only involves the value a of the
field at the boundary in the diffusion term, it also involves a in
the nonlinear advection (in f c) and in the nonlinear stabilisation
(in f b). But further, it also involves time derivatives of the boundary
value a. The reason is clearly that changes in a take time to advect
and diffuse into the interior of the first few elements and so the
effect of changes in the boundary value a upon the evolution of the
grid values will lag, as seen by the opposite sign of the coefficients
in the two columns of (16). This lag increases with the element
size h and hence accounts for the h2 factor multiplying every ȧ.
Similarly, though not recorded above, higher order analysis shows
each second derivative appears only in the combination h4ä. Such
effects are important when we try to use, in large scale problems,
the expected accuracy and stability of these holistic discretisations
on coarse grids.
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4 Apply Neumann boundary

conditions at a midpoint

Consider pdes with Neumann boundary conditions of prescribed
gradient of the field u. Two different sorts of numerical approxima-
tions are commonly developed for such a boundary condition: a grid
point is placed at the boundary (as for the Dirichlet problem of §3);
or the boundary is arranged to be midway between two grid points.
For the first case I found that the discretisation of the diffusion is
expressed in terms of non-symmetric matrices. For the second case,
the matrices are symmetric which again pleasingly corresponds to
the self-adjoint nature of the diffusion operator. Thus I report here
on the second case where the boundary is at a midpoint of the grid.

Evolution near the boundary: Without loss of generality, let
the Neumann boundary condition of prescribed gradient at a grid
midpoint be1

h
∂u

∂x
= γa(t) at x = x1/2 , (19)

where, as for the ibcs, we actually are interested in the case γ = 1.
To supplement this left-hand boundary condition on the leftmost
element we use the ibc (4) as before. We execute the computer
algebra program of Appendix A with options dirichlet:=0 and
midpoint:=1 .2 Again the interior discretisation is (8), whereas in
elements the near the boundary we find the grid values evolve ac-

1Neumann conditions at a grid point, say x1, may be incorporated into the
analysis by similarly requiring h∂u/∂x = γa at x = x1 in place of the left-hand
ibc (3).

2The computer algebra algorithm takes a few more iterations to complete
because the algorithm is tuned to the discrete form of the ibc (3) whose left-
hand side is only approximately that of (19).
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cording to the form (12) where now the matrices are

D = γ

 −1 1
1 −2 1 · · ·

1 −2 1


− γ2

12

 2 −3 1
−3 6 −4 1 · · ·

1 −4 6 −4 1


+

γ3

90

 −5 9 −5 1
9 −19 15 −6 1 · · ·

−5 15 −20 15 −6 1

 +O(γ4) ,(20)

C =
γ

2

 −1 1
−1 0 1 · · ·

−1 0 1


− γ2

12

 1 −2 1
1 0 −2 1 · · ·

−1 2 0 −2 1

 +O(γ3) , (21)

gc =
γ

24

 −u2
1 + u2

2

0
0

 +
γ2

24

 1
2
uTG1u

1
2
uTG2u

1
2
uTG3u

 where

G1 =

 −49
20

19
15

−11
15

19
15

−341
60

1
−11

15
1 0

 ,

G2 =


23
6

−47
12

0 0
−47

12
0 5 −1

0 5 −6 1
0 −1 1 0

 , (22)

B =
γ

12
D̃ +

γ

12

 − 1
48

1
48

0 0 0 · · ·
0 0 0

 +O(γ2) , (23)
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and G3 is as in (15). Denote by D̃ the symmetric matrix appearing
above in D linear in γ and then row extended across the interior of
the domain: D̃ is the matrix of the second-order centred approxima-
tion to the second derivative, δ2, but incorporating a zero derivative
condition to the left of the grid. Observe in the order γ2 and γ3 ma-
trices of D that the discretisation near the boundary of the diffusion
term, (20), is simply the interior discretisation seen in the first line
of (8) with the truncated D̃ replacing the centred difference δ2. Al-
though here there is no clear pattern in C nor B, as written above
see that: B is numerically close to D̃/12; and, upon denoting C̃ as
the matrix linear in γ in C, the γ2 matrix is (D̃C̃ + C̃D̃)/2 just as
for the Dirichlet boundary conditions. However, in this case the
identification is a little forced because numerically small discrepan-
cies have been gathered into gc along with indistinguishable similar

terms corresponding to γ2

24h
(δ2uj µδ3uj +δ4uj µδuj) appearing in the

interior discretisation (8). Nonetheless the closeness of the match
and the appropriate symmetry is reassuring.

Forcing again exhibits memory: The forcing from the bound-
ary takes the form

f d =


−γ − γ2

12
− γ3

45
+ γ

24
+ 11γ2

1440
+ γ3

378

+γ2

12
+ γ3

30
− 11γ2

1440
− γ3

252

−γ3

90
+ γ3

756

a +O(γ4, ä) , (24)

f c = γ

 −11
24

u1 + 31
960

u1

0 0
0 0

a

+
γ2

24

 −1
6
u1 − 11

60
u2 − 199

120
a 924u1−577u2−3223a

10080
− 757

48384
h2ȧ

−(11
12

u1 + u2)
53
480

u1 + 11
120

u2

0 0

a
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+O(γ3, ä) , (25)

f b =
γ

12

 −49
48

u2
1

637
5760

u2
1

0 0
0 0

a +O(γ2, ä) . (26)

As discussed in the previous section, the boundary value for the
flux a appears in a wide range of terms in the discretisation near the
boundary. The reason again is that the flux feeds into the subgrid
scale fields of the boundary elements and so affects the interaction
between the various physical processes. The scope for such interac-
tion increases with increasing element size h and so accounts for the
appearance of the h2 factor in front of the time derivative ȧ. We
need to know such effects on coarse grids.

5 Conclusion

We have considered the discretisation of Burgers’ equation (1) on a
finite domain as a worked example of incorporating physical bound-
ary conditions into the derivation of holistic discretisations. The
two most common physical boundary conditions were considered
in §3 and §4. Crucially we found: it is easy to maintain the symme-
try appropriate to self-adjoint differential operators; discretisations
are developed with constant bandwidth across the whole domain;
and lastly our resolution of subgrid scale processes shows how time
derivatives of the boundary forcing should be included in the dis-
cretisation.

Additionally, using the discrete form of the inter-element bound-
ary conditions (3–4) we observe for the first time a high order con-
sistency of the nonlinear dynamics of Burgers’ equation.
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A Computer algebra derives different

boundary discretisations

Straightforward computer algebra programs are written to find the
centre manifold and the evolution thereon [6, e.g.]. To ensure cor-
rectness and to provide a basis for further work I include the com-
puter algebra code. This replaces extensive recording of elementary
algebraic steps in the derivation of the results.

I implement the construction algorithm in reduce3 The overall
plan of the algorithm is to iteratively satisfy Burgers’ equation (1)
and the relevant internal (3–4) and actual boundary conditions. A
general interior element is analysed in lines 47–53 while the o:=3

elements near the boundary are analysed in the loop of lines 54–
71. Although there are many details in the program, the correct-
ness of the results are only determined by driving to zero (lines 53,
70 and 73) the residuals of Burgers’ equation in each element and
the internal and domain boundary conditions: lines 47–9 evaluate
the residuals for an arbitrary interior element; lines 55–8 for near
domain boundary elements; and lines 60 or 62 the domain bound-
ary condition. The other details, such as the updates computed
in lines 50–2 and 67–9, only affect the rate of convergence to the
ultimate answer.

1 Comment Find the discretisation of Burgers’ equation, or

3At the time of writing, information about reduce was available from
Anthony C. Hearn, RAND, Santa Monica, CA 90407-2138, USA. mailto:
reduce@rand.org
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2 variants, with three different boundary conditions:
3 * Dirichlet, u=a(t) at x=x_0
4 * Neumann, midpoint, u_x=a(t)/h at x=x_{1/2}
5 * Neumann, gridpoint, u_x=a(t)/h at x=x_1
6 (c) Tony Roberts, May 2001;
7 % set options to 1 (true) or 0 (false)
8 dirichlet:=1; midpoint:=0;
9 o:=3; % is number of near boundary elements

10
11 % improve printing
12 on div; off allfac; on revpri; factor gam,h;
13
14 % make function of xi=(x-x_j)/h
15 depend xi,x;
16 let df(xi,x)=>1/h;
17
18 % solvability condition
19 operator solg; linear solg;
20 let { solg(xi^~p,xi)=>(1+(-1)^p)/(p+2)/(p+1)
21 , solg(xi,xi)=>0, solg(1,xi)=>1 };
22
23 % solves v’’=RHS s.t. v(0)=0 and v(+1)=v(-1)
24 operator solv; linear solv;
25 let { solv(xi^~p,xi) =>
26 ( xi^(p+2)-(1-(-1)^p)*xi/2 )/(p+1)/(p+2)
27 , solv(xi,xi) => (xi^3-xi)/6
28 , solv(1,xi) => (xi^2)/2 };
29
30 % parametrise with evolving u(j) and boundary forcing a
31 operator u; depend u,t;
32 let { df(u(~k),t)=>sub(j=k,gj)
33 when (not fixp(k))or(fixp(k) and k>o)
34 , df(u(~k),t)=>g(k) when fixp(k) and k<=o and k>0 };
35 operator a; depend a,t;
36
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37 % linear solution in jth element
38 array g(o),v(o);
39 vj:=u(j);
40 gj:=0;
41 for j:=1:o do v(j):=u(j);
42
43 % iterative refinement to specified error
44 % here work to error |u|^4+gam^4 by multiplying advection by gam
45 let { gam^4=>0, df(a,t,2)=>0 };
46 repeat begin % first do interior elements
47 deq:=-df(vj,t)-gam*vj*df(vj,x)+df(vj,x,2);
48 rbc:=-(sub(xi=+1,vj)-sub(xi=0,vj))+gam*(u(j+1)-u(j));
49 lbc:=-(sub(xi=0,vj)-sub(xi=-1,vj))+gam*(u(j)-u(j-1));
50 gd:=(rbc-lbc)/h^2+solg(deq,xi);
51 gj:=gj+gd;
52 vj:=vj+h^2*solv(-deq+gd,xi)+xi*(rbc+lbc)/2;
53 ok:=if (deq=0)and(rbc=0)and(lbc=0) then 1 else 0;
54 for j:=1:o do begin % near boundary elements
55 deq:=-df(v(j),t)-gam*v(j)*df(v(j),x)+df(v(j),x,2);
56 rbc:=-(sub(xi=+1,v(j))-sub(xi=0,v(j)))+gam*(u(j+1)-u(j));
57 if j>1 then % internal left BC
58 lbc:=-sub(xi=0,v(j))+sub(xi=-1,v(j))+gam*(u(j)-u(j-1))
59 else if dirichlet then % dirichlet at x_0
60 lbc:=-sub(xi=0,v(1))+sub(xi=-1,v(1))+gam*(u(1)-a)
61 else if midpoint then % neumann at x_{1/2}
62 lbc:=-sub(xi=-1/2,h*df(v(1),x))+gam*a
63 else begin % neumann at x_1
64 abc:=-sub(xi=0,h*df(v(1),x))+gam*a;
65 lbc:=2*abc-rbc;
66 end;
67 gd:=(rbc-lbc)/h^2+solg(deq,xi);
68 g(j):=g(j)+gd;
69 v(j):=v(j)+h^2*solv(-deq+gd,xi)+xi*(rbc+lbc)/2;
70 ok:=if (deq=0)and(rbc=0)and(lbc=0) then ok else 0;
71 end;
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72 showtime;
73 end until ok=1;
74
75 end;
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